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SQUID* sensor array Axons in the cortical Direction of SQUID sensor

|
aligned to cortical surface of the brain electric current detects magnetic
surface of the brain in active axon field of current a I S

0 e

* Superconducting Quantum Interface Device

HUMAMCONNECTOME ORG

Magnetoencephalography is a
noninvasive technique for
iInvestigating neuronal activity in
the living human brain.




Inverse problem

't is a problem of finding electric /-~ Magnetic

: : : . 7 | tield Intracellular
distribution of electrical ) ( current
NG _\_.(d endrite)

impulses in some area Y,
associated with cortex that
based on data of its induced
magnetic field in another
place X that we get by MEG
system.,




The reason of our Interest in this

problem

Forward computation

Inverse computation




Start with Maxwell’s equations

rotE = 0,
rotH =]V + q,
divB = 0,
divD = p

H and E - intensity of magnetic
and electric fields

J¥ =0 E
B = uH
D = €¢E

o = g(x) = 0 - conductivity coefficient
u = u(x) = 0 -magnetic permeability
¢ = g(x) = 0 -electrical permeability




GENERAL ASPECTS



What we can derive from Maxwell’s equations?

rotE=0 & E=-V&, and divB=0 < B =rotA.
Since div(eE) = p then —eA® — VeV ® = p . We get the following formula:

AA(x) = —q(x) + V]o(x)®(x) + divA(x)| —®(x) Vo (x) .

Considering invariance invariance with respect to a scalar field, we derive this
formula: AA(x) = —-F(x), where F(x) =q(x) + ®(x)Vo(x).

Assuming a=(ay,as,a3), whereAa;(x) = §(x), a;(c0) =0, i.e. a;(x) = — =, We get

4w [x]

AA()=- [ Ply)daix-y)dy =A|- [ Fly)aix-y)dy|.



What we can derive from Maxwell’s equations?

®(y)Voly) , i — o Po(yy ) dy SN Po(ys)dys
/ x —y| dy = o+ O)X/ X~y G S/ x —y.|

ny and ng are the outward unit normalsto X =Yy NY, =Y, and S=YyNY_ =Y.
As a result, we obtain an integral equation of the I-kind
- . de d
J:q+ Jq if/ AV _ ey xev.
y X — Y|

whose right-hand side, given by the formula §=0Y, N Y-

f(x)=4rA(x) — [ 2YIW) gy

X=0Y,NoY.




Theorem 1 (see [3]) The equation (8) uniquely solvable, and its solution has the form

a(x) = qo(x) + po(y’)d o

is the ¢ -function on Y, and qo € C®(Y), po € C®(Y) if f € C(Y).?

where o

oY
e d
J:qr—>‘3qd=f Q(y)yzf(x), xeY, (8)
y [x—Y|

[3] A.S. Demidov (1973) Elliptic pseudodifferential boundary

value problems with a small parameter in
the coefficient of the leading operator, Math. USSR-Sb., 20:3,

439-463.



FLAT APPROXIMATION



QXx(x—y)
[x—y|3

According to Biot—Savart law B(x) =

B(x) = [, K(z,y)Q(y)dy & x = (z1,%2,23) € X

0 0 Kl?(may) _KSI(CC?y)
K(xay) — E _KIQ(xay) 0 K23($7y)
K31 (xay) _K23('/I;7y) 0
r3 — Y3 Xr2 — Y2 1 — Y1
KlQ(ﬂ?,y) — ) K31(:1?,y) — ) K23($ay) —
[z —y[3 [z — yl3 [z —y[3



In first time we observe a following flat model:

X =Ry 3 x = (xq,x2), |xp| <0

(R3DY)3y = (y1,¥2 =€) |yl <o
=1



The equation assumes the following form:

2 X
/e f

3
. j Kim(X — Y)0mdy = B(x), =123
m=1" Y




We rewrite our equation in the following form:

(1) 0p (R(©) Q(2) = B(x), where

0p (R(®)) = FL L R(©OF -,
’K,(f):‘tps—)&' K(S)
K (§)- is a symbol of a pseudodifferential operator

(2) K(§QE) =B(),§ = (§1.52)



Lemma 1

Ki,(&) = E(§),E(§) = 2me™ 27k .
§=(&,6) ¢l = \/512 + 522, and

Ry (6) = —i%E(é>,H31<f> _ —if—;lE(a,

where K(§)=F_¢ K(s)




Lemma 2

From the matrix equation (2) K(§)Q(§) = B(§) we obtain the following relations:

Bi(&) = Frse Bi(x); Q;(§) = Fyse Q; ()
i&,B,(8) +i&1B1(&) = 1€]B3(¢)

B© &
EQ e

61(5) - =

BGE) & -
EQ e @

@2(5) —



Theorem 1

Let B,(§) and B, (&) be continuous and have compact support.

Then the vector Q% = (4,(y), 4,(y), 0),

_ -1 Ez(f) _ -1 31(5)
Where A1()’) = :FE_)y (_ E(E))’AZ(y) = T€—>y (E(E))’

E(§) = 2me 278l satisfies the equation

Bw) = [ K(x —y)Q(»)dy,

the general solution of which is representable in the form Q = Q% + Q°,

where Q° = (07,09, 09):0f = —0p (i) Q3(),

03 = -0p (i:2) 031, Q30 € L,



Proposal 1

Suppose that y; = r cos 2m0 ,y, = rsin 2w .
G(r,0) =9,y = Z G (r)et2™me,

MmeZ

where G,,(r) € C.Then

(0.0)

Gglw) = Y 28" [ 16,0 nléinar,

Nnez 0

where G(|¢], w) = F ,,:9(),
¢&1 =€l cos2nw, &, = [€] sin2nw



Proposal 2

Let &, = [&]| cos 2w, &, = [€] sin2ntw.

CUEL @) = &) = ) Cnllghe2mme,

me7z

where C,,,(|¢]) € C. Then

. 1 -
Fidy a6 = ). e O [ 1618, nerléindlg
nez 0

wherey = (y1,¥,): y1 =rcos2m0,y, =rsin2n0 ué = (&, §,).



Final result

Let x = (p cos 2mg, p sin 2mp), and By (§) [k=1,2 = Znez Ca([EDe 2™,
where C,,(|&]) = pX(|€]) + gX(|&]) are such that B, (§) = 0 for |§] > R and some R > 0
and let the following condition be satisfied:

E | Z(—l)l f 1E1{J21(q%, cos 4mlp — p¥ sin4mle) + J2141(P5141 cos 22l + Vg — g5, sin2n (2L + Do) }d|E] = 0
€
0



Final result

Then the required components of the magnetic field, which are ngxék (&), are given by the
following explicit formulas:

B=1,2(x) = Z(—l)l f 1€1U21(p3; cos 4l + q5; sin 4mlg) + Jo141 (=541 cos 2m (2L + 1) + p3; sin 2m(21 + 1)) }d[¢]
leZ 0

1 0y,;B1(y)+0y,B2(y)
aB3(x) - 4n2f = Ix—yr2 2




Calculus

The required vector of the magnetic field must deliver the minimum to the
following functional:

BBe) =Y 3 P, Blay) - Blay)]

] 1 k= (lﬂl kg
We consider the special case when pr (€]) = O (N =0:n#£0,k=1,2

So we get the following expression B (x / €| Jo(27|€]p)pa (1€ d|€]

e 27|

For simplicity of calculations, we consider the followmg function Pe(E]) =

1
In thi B takes the following form: Bx(x) = (k=1,2).
n this case, By (x) takes the following form k(%) S ( )




[1] M. Yu. Shatalov, AS Demidov, |A Fedotoy,
THEORETICAL FOUNDATIONS OF CHEMICAL

Ca |Cu | us TECHNOLOGY, Vol. 50, No. 2, p. 1-11 (2016).
Taking into account divB = 0, B; = 0.

e—2ﬂ||
Using the technique presented in [1], we obtain the following: p§(l¢],\) = A 7 g
A
Bi(x,\) = = ABp(x), (k= 1,2 _
k(X7 ) ZW\W k(X) ( ) , B3 0
B A
It is easy to see that: 0 lgi\o’ ) = ABi(%0),(1=1,2,3)
®(x0,\) = (B1(x0,A) — B1(x0))? 4+ (B2(x0, A) — B2(x0))? + (Bs(x0, ) — Bs(x0))?
a(I)(Xo,)\) —0
O\ B
0P (xq, A 0B1 (x0, A 0B2(x0, A
02— (B0, ) — Ba(x0) A0 - (B (o, ) — Balxo)) T



Calculus

Substituting all the tabs in final expression, taking into account all expressions ,we

obtain:
2(A — 1)B3(x0) = 0

It means only that A — 1



Thank you for your attention!



