«THE INVERSE MAGNETOENCEPHALOGRAPHY PROBLEM AND ITS FLAT APPROXIMATION»

Demidov Alexandre, Moscow State University, Russia Galchenkova Marina, Moscow Institute of Physics and
Technology, Russia

SQUID* sensor array aligned to cortical surface of the brain

Axons in the cortical surface of the brain

Direction of electric current in active axon

SQUID sensor detects magnetic field of current -

Magnetoencephalography is a noninvasive technique for investigating neuronal activity in the living human brain.

What is MEG?

Inverse problem

It is a problem of finding distribution of electrical impulses in some area Y, associated with cortex that based on data of its induced magnetic field in another place X that we get by MEG system.

The reason of our interest in this problem

 Forward computation

 Forward computation}

Start with Maxwell's equations

$$
\begin{gathered}
\operatorname{rot} E=0 \\
\operatorname{rot} \mathbf{H}=\mathbf{J}^{v}+\mathbf{q} \\
\operatorname{div} \mathbf{B}=0 \\
\operatorname{div} \mathbf{D}=\rho
\end{gathered}
$$

\mathbf{H} and \mathbf{E} - intensity of magnetic and electric fields

$$
\begin{aligned}
& \mathbf{J}^{v}=\sigma \mathbf{E} \\
& \mathbf{B}=\mu \mathbf{H} \\
& \boldsymbol{D}=\varepsilon \mathbf{E}
\end{aligned}
$$

$$
\begin{aligned}
& \sigma=\sigma(x) \geq 0 \text { - conductivity coefficient } \\
& \mu=\mu(x) \geq 0 \text { - magnetic permeability } \\
& \varepsilon=\varepsilon(x) \geq 0 \text { - electrical permeability }
\end{aligned}
$$

GENERAL ASPECTS

What we can derive from Maxwell's equations?

$\operatorname{rot} \mathbf{E}=0 \quad \Leftrightarrow \quad \mathbf{E}=-\nabla \Phi, \quad$ and $\quad \operatorname{div} \mathbf{B}=0 \quad \Leftrightarrow \quad \mathbf{B}=\operatorname{rot} \mathbf{A}$.
Since $\operatorname{div}(\varepsilon E)=\rho$ then $-\varepsilon \Delta \Phi-\nabla \varepsilon \nabla \Phi=\rho$. We get the following formula:
$\Delta \mathbf{A}(\mathbf{x})=-\mathbf{q}(\mathbf{x})+\nabla[\sigma(\mathbf{x}) \Phi(\mathbf{x})+\operatorname{div} \mathbf{A}(\mathbf{x})]-\Phi(\mathbf{x}) \nabla \sigma(\mathbf{x})$.
Considering invariance invariance with respect to a scalar field, we derive this formula: $\Delta \mathbf{A}(\mathbf{x})=-\mathbf{F}(\mathbf{x})$, where $\quad \mathbf{F}(\mathbf{x})=\mathbf{q}(\mathbf{x})+\Phi(\mathbf{x}) \nabla \sigma(\mathbf{x})$. Assuming $\mathbf{a}=\left(\mathrm{a}_{1}, a_{2}, a_{3}\right)$, where $\Delta a_{j}(\mathbf{x})=\delta(\mathbf{x}), a_{j}(\infty)=0$, i.e. $a_{j}(\mathbf{x})=-\frac{1}{4 \pi} \frac{1}{|\mathbf{x}|}$, we get $\Delta \mathbf{A}(\mathbf{x})=-\int_{Y} \mathbf{F}(\mathbf{y}) \Delta \mathbf{a}(\mathbf{x}-\mathbf{y}) d \mathbf{y}=\Delta\left[-\int_{Y} \mathbf{F}(\mathbf{y}) \mathbf{a}(\mathbf{x}-\mathbf{y}) d \mathbf{y}\right]$.

What we can derive from Maxwell's equations?

$$
\int_{Y} \frac{\Phi(\mathbf{y}) \nabla \sigma(\mathbf{y})}{|\mathbf{x}-\mathbf{y}|} d \mathbf{y}=\left(\sigma_{+}-\sigma_{0}\right) \mathbf{n}_{X} \int_{X} \frac{\Phi_{0}\left(\mathbf{y}_{X}\right) d \mathbf{y}_{X}}{\left|\mathbf{x}-\mathbf{y}_{X}\right|}+\left(\sigma_{0}-\sigma_{-}\right) \mathbf{n}_{S} \int_{S} \frac{\Phi_{0}\left(\mathbf{y}_{S}\right) d \mathbf{y}_{S}}{\left|\mathbf{x}-\mathbf{y}_{S}\right|}
$$

\mathbf{n}_{X} and \mathbf{n}_{S} are the outward unit normals to $X=Y_{0} \cap Y_{+}=Y_{+}$and $S=Y_{0} \cap Y_{-}=Y$.
As a result, we obtain an integral equation of the l-kind

$$
\mathfrak{I}: \mathbf{q} \mapsto \mathfrak{I} \mathbf{q} \stackrel{\text { def }}{=} \int_{Y} \frac{\mathbf{q}(\mathbf{y}) d \mathbf{y}}{|\mathbf{x}-\mathbf{y}|}=\mathbf{f}(\mathbf{x}), \quad \mathbf{x} \in Y,
$$

whose right-hand side, given by the formula

$$
\mathbf{f}(\mathbf{x})=4 \pi \mathbf{A}(\mathbf{x})-\int_{Y} \frac{\Phi(\mathbf{y}) \nabla \sigma(\mathbf{y})}{|\mathbf{x}-\mathbf{y}|} d \mathbf{y}
$$

Theorem 1 (see [3]) The equation (8) uniquely solvable, and its solution has the form

$$
\mathbf{q}(\mathbf{x})=\mathbf{q}_{0}(\mathbf{x})+\left.\mathbf{p}_{0}\left(\mathbf{y}^{\prime}\right) \delta\right|_{\partial Y}
$$

where $\left.\delta\right|_{\partial Y}$ is the δ-function on ∂Y, and $\mathbf{q}_{0} \in C^{\infty}(\bar{Y}), \mathbf{p}_{0} \in C^{\infty}(\partial Y)$ if $\mathbf{f} \in C^{\infty}(\bar{Y}) .{ }^{3}$

$$
\begin{equation*}
\mathfrak{I}: \mathbf{q} \mapsto \mathfrak{I} \mathbf{q} \stackrel{\text { def }}{=} \int_{Y} \frac{\mathbf{q}(\mathbf{y}) d \mathbf{y}}{|\mathbf{x}-\mathbf{y}|}=\mathbf{f}(\mathbf{x}), \quad \mathbf{x} \in Y \tag{8}
\end{equation*}
$$

[3] A.S. Demidov (1973) Elliptic pseudodifferential boundary value problems with a small parameter in the coefficient of the leading operator, Math. USSR-Sb., 20:3, 439-463.

FLAT APPROXIMATION

According to Biot-Savart law $B(x)=\frac{Q \times(x-y)}{|x-y|^{3}}$

$$
\begin{gathered}
B(x)=\int_{Y} K(x, y) Q(y) d y, \quad x=\left(x_{1}, x_{2}, x_{3}\right) \in X \\
K(x, y)=\frac{\mu}{4 \pi}\left(\begin{array}{ccc}
0 & K_{12}(x, y) & -K_{31}(x, y) \\
-K_{12}(x, y) & 0 & K_{23}(x, y) \\
K_{31}(x, y) & -K_{23}(x, y) & 0
\end{array}\right)
\end{gathered}
$$

$$
K_{12}(x, y)=\frac{x_{3}-y_{3}}{|x-y|^{3}}, \quad K_{31}(x, y)=\frac{x_{2}-y_{2}}{|x-y|^{3}}, \quad K_{23}(x, y)=\frac{x_{1}-y_{1}}{|x-y|^{3}}
$$

In first time we observe a following flat model:

$$
\begin{array}{r}
X=\mathbb{R}_{2} \ni x=\left(x_{1}, x_{2}\right),\left|x_{k}\right|<\infty \\
\left(\mathbb{R}_{3} \supset Y\right) \ni y=\left(y_{1}, y_{2},-\varepsilon\right):\left|y_{k}\right|<\infty \\
\varepsilon=1
\end{array}
$$

The equation assumes the following form:

$$
\sum_{m=1}^{3} \int_{Y} K_{l m}(x-y) Q_{m}(y) d y=B_{l}(x), \quad l=1,2,3
$$

We rewrite our equation in the following form:

$$
\begin{gathered}
\text { (1) } O p(\widetilde{K}(\xi)) Q(z)=B(x) \text {, where } \\
O p(\widetilde{K}(\xi))=\mathcal{F}_{\xi \rightarrow x}^{-1} \widetilde{K}(\xi) \mathcal{F}_{z \rightarrow \xi}, \\
\widetilde{K}(\xi)=\mathcal{F}_{s \rightarrow \xi} K(s)
\end{gathered}
$$

$\widetilde{K}(\xi)$ - is a symbol of a pseudodifferential operator

$$
\text { (2) } \widetilde{K}(\xi) \widetilde{Q}(\xi)=\tilde{B}(\xi), \xi=\left(\xi_{1}, \xi_{2}\right)
$$

Lemma 1

$$
\begin{gathered}
\widetilde{K}_{12}(\xi)=E(\xi), E(\xi)=2 \pi e^{-2 \pi|\xi|}: \\
\xi=\left(\xi_{1}, \xi_{2}\right),|\xi|=\sqrt{\xi_{1}^{2}+\xi_{2}^{2}}, \text { and } \\
\widetilde{K}_{23}(\xi)=-i \frac{\xi_{1}}{|\xi|} E(\xi), \widetilde{K}_{31}(\xi)=-i \frac{\xi_{2}}{|\xi|} E(\xi), \\
\quad \text { where } \widetilde{K}(\xi)=\mathcal{F}_{s \rightarrow \xi} K(s)
\end{gathered}
$$

Lemma 2

From the matrix equation $(2) \widetilde{K}(\xi) \widetilde{Q}(\xi)=\widetilde{B}(\xi)$ we obtain the following relations:

$$
\begin{gathered}
\tilde{B}_{j}(\xi)=\mathcal{F}_{x \rightarrow \xi} B_{j}(x) ; \tilde{Q}_{j}(\xi)=\mathcal{F}_{y \rightarrow \xi} Q_{j}(y) \\
i \xi_{2} \tilde{B}_{2}(\xi)+i \xi_{1} \tilde{B}_{1}(\xi)=|\xi| \tilde{B}_{3}(\xi) \\
\tilde{Q}_{1}(\xi)=-\frac{\tilde{B}_{2}(\xi)}{E(\xi)}-i \frac{\xi_{1}}{|\xi|} \tilde{Q}_{3}(\xi) \\
\tilde{Q}_{2}(\xi)=\frac{\tilde{B}_{1}(\xi)}{E(\xi)}-i \frac{\xi_{2}}{|\xi|} \tilde{Q}_{3}(\xi)
\end{gathered}
$$

Theorem 1

Let $\tilde{B}_{1}(\xi)$ and $\tilde{B}_{2}(\xi)$ be continuous and have compact support. Then the vector $Q^{B}=\left(A_{1}(y), A_{2}(y), 0\right)$,

$$
\begin{gathered}
\text { where } A_{1}(y)=\mathcal{F}_{\xi \rightarrow y}^{-1}\left(-\frac{\tilde{B}_{2}(\xi)}{E(\xi)}\right), A_{2}(y)=\mathcal{F}_{\xi \rightarrow y}^{-1}\left(\frac{\tilde{B}_{1}(\xi)}{E(\xi)}\right), \\
E(\xi)=2 \pi e^{-2 \pi|\xi|}, \text { satisfies the equation } \\
B(x)=\int K(x-y) Q(y) d y
\end{gathered}
$$

the general solution of which is representable in the form $Q=Q^{B}+Q^{0}$,

$$
\text { where } \begin{aligned}
Q^{0} & =\left(Q_{1}^{0}, Q_{2}^{0}, Q_{3}^{0}\right) ; Q_{1}^{0}=-O p\left(i \frac{\xi_{1}}{|\xi|}\right) Q_{3}^{0}(y) \\
Q_{2}^{0} & =-O p\left(i \frac{\xi_{2}}{|\xi|}\right) Q_{3}^{0}(y), Q_{3}^{0}(y) \in L_{2}
\end{aligned}
$$

Proposal 1

Suppose that $y_{1}=r \cos 2 \pi \Theta, y_{2}=r \sin 2 \pi \Theta$.

$$
G(r, \Theta)=g\left(y_{1}, y_{2}\right)=\sum_{m \in \mathbb{Z}} G_{m}(r) e^{i 2 \pi m \Theta}
$$

where $G_{m}(r) \in \mathbb{C}$. Then

$$
\tilde{G}(|\xi|, \omega)=\sum_{n \in \mathbb{Z}} e^{i 2 \pi\left(\omega-\frac{1}{4}\right) n} \int_{0}^{\infty} r G_{n}(r) J_{n}(2 \pi|\xi| r) d r
$$

where $\tilde{G}(|\xi|, \omega)=\mathcal{F}_{y \rightarrow \xi} g(y)$,

$$
\xi_{1}=|\xi| \cos 2 \pi \omega, \xi_{2}=|\xi| \sin 2 \pi \omega
$$

Proposal 2

Let $\xi_{1}=|\xi| \cos 2 \pi \omega, \xi_{2}=|\xi| \sin 2 \pi \omega$.

$$
\tilde{\mathrm{C}}(|\xi|, \omega)=\tilde{\mathrm{c}}\left(\xi_{1}, \xi_{2}\right)=\sum_{m \in \mathbb{Z}} \tilde{\mathrm{C}}_{m}(|\xi|) e^{-i 2 \pi m \omega},
$$

where $\tilde{\mathrm{C}}_{m}(|\xi|) \in \mathbb{C}$. Then

$$
\mathcal{F}_{\xi \rightarrow y}^{-1} \tilde{\mathrm{c}}\left(\xi_{1}, \xi_{2}\right)=\sum_{n \in \mathbb{Z}} e^{-i 2 \pi\left(\Theta-\frac{1}{4}\right) n} \int_{0}^{\infty}|\xi| \tilde{\mathrm{C}}_{n}(|\xi|) J_{n}(2 \pi|\xi| r) d|\xi|
$$

where $\mathrm{y}=\left(y_{1}, y_{2}\right): y_{1}=r \cos 2 \pi \Theta, y_{2}=r \sin 2 \pi \Theta$ и $\xi=\left(\xi_{1}, \xi_{2}\right)$.

Final result

Let $x=(\rho \cos 2 \pi \varphi, \rho \sin 2 \pi \varphi)$, and $\left.\widetilde{\mathrm{B}}_{\mathrm{k}}(\xi)\right|_{\mathrm{k}=1,2}=\sum_{\mathrm{n} \in \mathbb{Z}} \widetilde{\mathrm{C}}_{\mathrm{n}}(|\xi|) \mathrm{e}^{-\mathrm{i} 2 \pi \mathrm{n} \omega}$, where $\tilde{\mathrm{C}}_{n}(|\xi|)=p_{n}^{k}(|\xi|)+q_{n}^{k}(|\xi|)$ are such that $\tilde{B}_{k}(\xi)=0$ for $|\xi|>R$ and some $R>0$ and let the following condition be satisfied:
$\sum_{l \in \mathbb{Z}}(-1)^{l} \int_{0}^{\infty}|\xi|\left\{J_{2 l}\left(q_{2 l}^{k} \cos 4 \pi l \varphi-p_{2 l}^{k} \sin 4 \pi l \varphi\right)+J_{2 l+1}\left(p_{2 l+1}^{k} \cos 2 \pi(2 l+1) \varphi-q_{2 l}^{k} \sin 2 \pi(2 l+1) \varphi\right)\right\} d|\xi|=0$

Final result

Then the required components of the magnetic field, which are $\mathcal{F}_{\xi \rightarrow x}^{-1} \tilde{B}_{k}(\xi)$, are given by the following explicit formulas:
$B_{k=1,2}(x)=\sum_{l \in \mathbb{Z}}(-1)^{l} \int_{0}^{\infty}|\xi|\left\{J_{2 l}\left(p_{2 l}^{k} \cos 4 \pi l \varphi+q_{2 l}^{k} \sin 4 \pi l \varphi\right)+J_{2 l+1}\left(-q_{2 l+1}^{k} \cos 2 \pi(2 l+1) \varphi+p_{2 l}^{k} \sin 2 \pi(2 l+1) \varphi\right)\right\} d|\xi|$

$$
\mathbf{a} B_{3}(x)=\frac{1}{4 \pi^{2}} \int \frac{\partial_{y_{1}} B_{1}(y)+\partial_{y_{2}} B_{2}(y)}{|x-y|} d y .
$$

Calculus

The required vector of the magnetic field must deliver the minimum to the following functional:

$$
\Phi(\tilde{\mathbf{B}}(\mathbf{x}))=\sum_{j=1}^{3} \sum_{k=\left(k_{1}, k_{2}\right)}\left|\mathbf{F}_{\xi \rightarrow x_{k}}^{-1} \tilde{\mathbf{B}}\left(x_{k}\right)-\mathbf{B}\left(x_{k}\right)\right|
$$

We consider the special case when $p_{n}^{k}(|\xi|)=0, q_{n}^{k}(|\xi|)=0: n \neq 0, k=1,2$
So we get the following expression $B_{k}(\mathbf{x})=\int_{0}^{\infty}|\xi| J_{0}(2 \pi|\xi| \rho) p_{0}^{k}(|\xi|) d|\xi|$
For simplicity of calculations, we consider the following function $\mathrm{p}_{0}^{k}(|\xi|)=\frac{e^{-2 \pi|\xi|}}{|\xi|}$ In this case, $B_{k}(x)$ takes the following form: $\quad B_{k}(\mathbf{x})=\frac{1}{2 \pi \sqrt{1+\rho^{2}}},(k=1,2)$.

Taking into account $\operatorname{div} \mathbf{B}=0, B_{3}=0$.
Using the technique presented in [1], we obtain the following: $p_{0}^{k}(|\xi|, \lambda)=\frac{\lambda e^{-2 \pi|\xi|}}{|\xi|}$

$$
B_{k}(\mathbf{x}, \lambda)=\frac{\lambda}{2 \pi \sqrt{1+\rho^{2}}}=\lambda \mathbf{B}_{\mathbf{k}}(\mathbf{x}),(\mathbf{k}=\mathbf{1}, \mathbf{2}), B_{3}=0
$$

It is easy to see that: $\quad \frac{\partial B_{l}\left(\mathbf{x}_{\mathbf{0}}, \lambda\right)}{\partial \lambda}=\lambda B_{l}\left(\mathbf{x}_{\mathbf{0}}\right),(\mathbf{l}=\mathbf{1}, \mathbf{2}, \mathbf{3})$

$$
\Phi\left(\mathbf{x}_{\mathbf{0}}, \lambda\right)=\left(\mathbf{B}_{\mathbf{1}}\left(\mathbf{x}_{\mathbf{0}}, \lambda\right)-\mathbf{B}_{\mathbf{1}}\left(\mathbf{x}_{\mathbf{0}}\right)\right)^{\mathbf{2}}+\left(\mathbf{B}_{\mathbf{2}}\left(\mathbf{x}_{\mathbf{0}}, \lambda\right)-\mathbf{B}_{\mathbf{2}}\left(\mathbf{x}_{\mathbf{0}}\right)\right)^{\mathbf{2}}+\left(\mathbf{B}_{\mathbf{3}}\left(\mathbf{x}_{\mathbf{0}}, \lambda\right)-\mathbf{B}_{\mathbf{3}}\left(\mathbf{x}_{\mathbf{0}}\right)\right)^{\mathbf{2}}
$$

$$
\frac{\partial \Phi\left(\mathbf{x}_{\mathbf{0}}, \lambda\right)}{\partial \lambda}=0
$$

$$
\frac{\partial \Phi\left(\mathbf{x}_{\mathbf{0}}, \lambda\right)}{\partial \lambda}=\left(B_{1}\left(\mathbf{x}_{\mathbf{0}}, \lambda\right)-\mathbf{B}_{\mathbf{1}}\left(\mathbf{x}_{\mathbf{0}}\right)\right) \frac{\partial \mathbf{B}_{\mathbf{1}}\left(\mathbf{x}_{\mathbf{0}}, \lambda\right)}{\partial \lambda}+\left(\mathbf{B}_{\mathbf{2}}\left(\mathbf{x}_{\mathbf{0}}, \lambda\right)-\mathbf{B}_{\mathbf{2}}\left(\mathbf{x}_{\mathbf{0}}\right)\right) \frac{\partial \mathbf{B}_{\mathbf{2}}\left(\mathbf{x}_{\mathbf{0}}, \lambda\right)}{\partial \lambda}
$$

Calculus

Substituting all the tabs in final expression, taking into account all expressions , we obtain:

$$
2(\lambda-1) B_{1}^{2}\left(\mathbf{x}_{\mathbf{0}}\right)=\mathbf{0}
$$

It means only that $\lambda=1$

Thank you for your attention!

