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Ectoparasite-borne diseases harboured by rodents

Ectoparasites

@ parasites that live on or in the skin but not within the body

@ lice, fleas, mites

@ long been known as vectors of several infectious diseases
including epidemic typhus and plague

@ in several cases, ectoparasites are transmitted to humans from
animals, most often by rodents
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Ectoparasite-borne diseases harboured by rodents

@ tranmitted by fleas
@ caused by the bacterium Yersinia pestis
@ harboured by rats
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Ectoparasite-borne diseases harboured by rodents

Omsk hemorrhagic fever

@ tranmitted by ticks
@ caused by a Flavivirus

@ harboured by water voles and muskrats
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Ectoparasite-borne diseases harboured by rodents

Rickettsialpox

@ tranmitted by mites
@ caused by caused by the bacteria Rickettsia akari

@ harboured by mice
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Ectoparasite-borne diseases harboured by rodents

Murine typhus

@ tranmitted by fleas
@ caused by caused by the bacteria Rickettsia typhi

@ harboured by rats
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Ectoparasite-borne diseases harboured by rodents

Scrub typhus

@ tranmitted by trombiculid mites
@ caused by the bacteria Orientia tsutsugamushi
@ harboured by mice

@ more than a million cases annually in Asia with more than a
billion people being at risk
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Mathematical model — assumptions

@ an infectious disease caused by a pathogen spread by
ectoparasites which are harboured by rodents

@ ectoparasites might be infectious or non-infectious

@ a given rodent/human can be infested only by one type of the
ectoparasite (infectious or non-infectious)

@ a human can be infested (infected) through adequate contact with
an infested (infected) rodent or another human

@ ectoparasites are not transmitted back from humans to the rodents

due to disinfestation and/or treatment, infested and infected

humans may become susceptible again

0
S

Figure: courtesy of Julia Rost
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Mathematical model — notations

Rodent compartments

@ R(t) —susceptible rodents
e T(t) - rodents infested by non-infectious parasites
@ Q(t) —rodents infested by infectious parasites

Human compartments

@ S(t) — susceptible humans
@ I(t) — humans infested by non-infectious parasites

@ J(t) —humans infested by infectious parasites
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Mathematical model — notations

@ A - birth rate of rodents

@ d - death rate of rodents

@ f; —transmission rate between R and T

@ 3, — transmission rate between R and Q, resp. T and Q
@ B - birth rate of humans

@ 0 — death rate of humans

@ ¢ — disease-induced death rate of humans

@ 17 — transmission rate between S and I

@ 1, —transmission rate between S and J, resp. [ and |

@ 71 — transmission rate between T and S

@ 72 — transmission rate between Q and S, resp. Q and I
@ 0; — disinfestation rate from I

@ 0, —disinfestation/recovery rate from |
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Mathematical model

R'(t) = A= BiR()T(t) — B2R(H)Q(¢) — dR(t),

T'(t) = PIR(T(t) — BT (H)Q(t) — dT(t),
Q'(t) = B2R(H)Q(t) + 2T (1)Q(E) — dQ(8),
S'(t) = B—mS(H)T(t) — n2S(£)Q(t) —vaS(B)I(t) — vaS(£)] (t)

—0S(t) + 011(t) + 62](t),
I'(t) = mSET(t) +wnS(HI() — n2A(H)Q(t) — val ()] (t) — SI(t) — 611(t),
J'(£) = m12S(H)Q(t) + m2l () Q(t) +v2S(£)] () + v2I(1)] (¢)
—oJ(t) — pJ(t) — 0] (t), pRa
& R B.RT /_‘I_\ B.TQ Q

R \[ﬁ dQ

n,SQ+v,SJ
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The rodent subsystem

R(t) = A— BiR(H)T(t) — B2R(£)Q(t) — dR(t),
T'(t) = BIR(T(t) — BT (H)Q(t) — dT(t),
Q'(t) = B2R(H)Q(E) + B2T(1)Q(t) — dQ(t)

Equilibria
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The rodent subsystem

Reproduction numbers

Local stability

@ ErisLASifry <1and r, < 1and unstableifr; > 1orr, > 1
@ ErisLASifr; >landmrn <1
@ EgisLASifr, >landr; <1
@ Ergis LASifr, >1andr; > 1
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The rodent subsystem — persistence

X#@Qandp: X = Ry
®: Ry x X — X is uniformly weakly p-persistent, if 3¢ > 0 :

limsupp(®(t,x)) >  VxeX, p(x) > 0.

t—o0

® is uniformly (strongly) p-persistent if 3¢ > 0 :
liginfp(é(t,x)) >e  VxeX, p(x)>0.

M C X is weakly p-repelling if fx € X : p(x) > 0 and ®(t,x) — M as
t — oo.
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The rodent subsystem — persistence

R(t) is always uniformly persistent. T(t) is uniformly persistent if
r1>1landr, < laswellasifr, > 1and r3 > 1. Q(t) is uniformly
persistent if r, > 1.

Proof

R(t): method of fluctuation
It — 00 : R(t) = Reo = liminf;_,e R(¢) and R'(t;) — 0 ask — oo
= R'(t) + ﬁlR(tk)T(tk) + B2R(t)Q(t) = A

using 0 < T < and 0<O* <L =4 7 we obtain Re, >

Bi+B2 +/52
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The rodent subsystem — persistence

Proof
T(t) and Q(t): persistence theory (Smith & Thieme)

Xr:={(R,T,Q) € R®: T = 0} extinction space
Q= UXT w(RI T, Q)

Q = {Eg} or Q = {Eg, Eg}: acyclic, invariant, isolated, compact

{Er}, {Eq} is weakly T-repelling, i.e. # solution with
lim; (R, T,Q) = Eg (or Eq) with T(¢) > 0
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The rodent subsystem — global stability

@ ERisGASifry <landr, < 1.
@ ErisGASon X\ Xrifr; > 1and r, < 1. Eg is GAS on Xr.

@ EgisGASon X\ Xqifr, > 1and r3 < 1. Eg is GAS on X if
r1 < land Eris GASon Xg ifrqy > 1.

@ ErgisGASon X\ (XrUXg) ifr, > 1and r3 > 1. Eris GAS on X
and Eg is GAS on Xr.

Introduce F(t) := R(t) + T(t) to obtain

P(t) = A— BoF()Q(E) — dE(),
Q'(t) = BE(HDQ(E) — dQ(t).
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The rodent subsystem — global stability

Proof
Apply the Dulac function 1/Q:

A—BFQ—dF FQ—d
a% ﬁzQQ +aﬁz%Q 52__<0

to obtain that there is no periodic solution and all solutions tend to one
. d
of the two equilibria ( =) ) and ( By d ﬁ_z)

If r, < 1, then only (4,0) exists = Q(t) — O and F(t) — 4 =

T'(t) = yT(t) — B1T2(t) with = (252 —g)

Ce*
1+ %1 Cert

nontrivial solutions:

It <1=T(t) = 0,ifr1 >1=T(t) = 4 — 4

v
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The rodent subsystem — global stability

Proof
If r» > 1 = both equilibria exist

Persistence of Q(t) = Q(t) — 4 — % =
T'(t) = 4T(t) — B1T3(t) with 4 = (dﬁil Agz)

Ifry < 1= T(t) = 0,ifrs > 1= T(t) > £ — 42
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The human subsystem

S'(t) = B — i T*S(t) — 12Q*S(E) — 1 S(H)I(E) — 1S (1) (1)

— 8S(t) + 041(t) + 6] (1),
I'(t) = TS () + nS(DI(E) — 12Q*(F) — vaf (H)I(E) — I(t) — 011(E),
J'(t) = 12Q7S(t) + mQ"I(t) +v2S(1)](t) + val (1)] (t)

= OJ(t) — pJ(t) — 0] (t)
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The human subsystem

S'(t) = B—mT"S(t) — 12Q"S(t) — nuS(OI(t) —v2S()] (1)

—OS(t) + 611(t) + 62J(¢),
I'(t) = mT*S(t) + nS(HI(t) — 12QI() — vaJ (H)I(t) — SI(t) — 611(t),
J'(#) = 12QS(8) + 12Q"I(E) +vaS()] (1) + val (D] (1)

— 8] () = pJ(t) — 62 (1)

Introduce G(t) := S(t) + I(t) to obtain

G'(t) = B—mQ"G(t) —12G(1)](t) — 6G(t) + 62] (1),
J'(t) = mQ"G(t) +v2G(1)] () — 5] (t) — pJ () — 6] (1).
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The human subsystem

Apply Bendixson-Dulac criterion with Dulac function 1/] and
Poincaré—Bendixson theorem

iB — ﬂzQ*G — 1/2G] —6G + 92] i EUZQ*G + VzG] — (5] — p] — 92]
oG J ] J

to obtain that all solutions tend to one of the two possible equilibria

E, = (D+B1/2—\/(D—sz)2+4BUZQ*1/2((5+,0) —D+BV2+\/(D—Bv2)2+4Bq2Q*v2((5+p))

201, ’ 2(5+p)va
and
E — D+Bvy+4/(D—Bv2)2+4B1,Q*v5(6+p) —D—+Bry—+/(D—Bv;)2+4Br2Q* 12 (5+p)
2= 28, ’ 2(0+p)v,

with D = 6% + Q*1p + 8(Q*np + 62 + p)
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The human subsystem

Casel:ry >1<Q*>0

only E; exists = all solutions tend to E;
Case2:n <1< Q*=0

The above system simplifies to

G/ (1) = B—v:G(D]() — 6G () + 6a] (1),
J(£) = vaG1)] () — 8] (t) — pJ () — 621 (1)

which has the two equilibria

. (B . [ 0+62+p Bury—6(6+6,+p)
er == (%,0) and e, := ( )

ey only exists if R{) =5 B, 1

(5+92+P)
If R{) < 1 = all solutions tend to ¢;

If ’R{) > 1 = J(t) strongly persistent = all positive solutions tend to e,
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The human subsystem

Substitute the limit J* into the first two equations of the human
subsystem:

S'(t) = B—mT*S(t) — 72Q*S(t) — w1 S(t)I(t) — 1o *S(t)
— 8S(t) + 011(t) + 6o]%,
I'(t) =mT*S(t) +viS(H)I(t) — 12Q I(t) — v “I(t) — SI(t) — 611(¢)

having two possible equilibria

£ = (1/1(B+92]*)+P—\/(v1(B+92]*)—P)2+H vl(B-I—GZI*)—P—i-\/(vl(B+02]*)—P)2+H)

211K 4 211K
and
S . V1(B+92]*)+P+\/(V1(B+92]*)—P)2+H 1/1(B-‘rez]*)—P—\/(V1(3+92]*)—P)2+H
2 — 211K 4 21 K

with K = (8§ + 72Q* +12]*), P = K(6 4 61 + mT* + 12Q* + vJ*) and
H = 47]1V1T* (B + 92]*)K
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The human subsystem

Apply Bendixson-Dulac criterion with Dulac function 1/I and

Poincaré—Bendixson theorem to show that all solutions tend to an
equilibrium:

0 B— TS — 112Q*S — v1SI — 15]*S — 85 + 611 + 6]

dS I
d 171T*S + 1/151 — ﬂzQ*I — 1/2]*1 — 0l — 911
_|_ R
dl I
_—mTt Qo w]t 6 TS
- S T B

& only exists if T* = 0
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The human subsystem

IfT*>0and Q" > 0< r, > 1and r3 > 1 = all solutions tend to
(&1, €1, E7)

If T* > 0and Q* = 0, < 1 > 1and r; < 1 = RJ, determines the limit
of J()

Ifry >1,rn <1land ’R{) < 1 < all solutions of tend to (811, 512, 0) ,

Ifriy >1,mn <1land Ré > 1 < all solutions tend to

1=t 1/2(5+P)
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The human subsystem

IfT* =0(r;y <1andr, < 1), the system reduces to

S'(t) = B—nQ*S(t) —v1S(H)I(t) — 1S(H)]*
— 8S(t) + 011(t) + 62",
I'(t) = vS(HI(t) — n2Q I(t) — val(t)]* — SI(t) — 611(¢),

having the two equilibria

e — (an*+vz]*+<5+91 w(B+921*)—(an*+le*+5)(an*+vZ]*+5+91))
1 v ’ v1(12Q* +va]*+9) !
and

_ B+0,]*
82 - (WZQTVZZI*‘M, 0) s

with &, only existing if

RL = v1(B+6,]%)
0" (12Q" +vaJ* +8) (112Q* +va] " +0+61

)>1.
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The human subsystem

If Ré <1, only &; exists = all solutions tend to (mQﬁ—%’ 0,] *)

If R} > 1 = I(t) is strongly persistent = all positive solutions of the SI
system tend to &4
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The human subsystem

If Q* > 0 (r, > 1) = 3! equilibrium of the GJ system => J(¢) tends to E?

2
If r, > 1and R} < 1 = all solutions tend to " B:GZEl ,0,E2
12 <E — E) -H/zE%-‘r(S

Ifr, >1and R{) > 1, all solutions tend to

112Q* +12E3 46461 11 (B+62E2) — (112Q" +12E3+6) (12Q" +12E3 +5+61) E2
141 4 V1(1’]2Q*+1/2E%+(5) =1
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The human subsystem

Ifr, <1(Q*=0)= R{) determines lim;_,« J(t).
Ifri <1,rn <1, R{) <1, Ré < 1 = all solutions tend to
B
(3,0, 0) .

Ifri<1,rn <1, R{) <1, R{) > 1, all solutions tend to

st B_ 0461
") /5 1 s .

Ifrn<1lmrn<l1, R{) >1, Ré < 1, all solutions tend to

((5+92+p 0 VzB—5(5+9z+P)>
1%} 7Y 1/2(5+p) .

Ifri <1, <1, R{) >1, R{) > 1, all solutions tend to

(UZB+91P+(5(91—92) 56,—1,B + 5+6+p 6 sz—5(5+92+p)>
v1(6+p) 7 11 (0+p) vy vy’ 12(8+p)
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Possible ways to control

Three main ways to control the disease:
@ decrease the transmission rates 7; » between humans and rodents

@ increase the disinfestation rates 6 » of humans to shorten the
duration of infestation of humans

@ reduce d by culling of the rodents
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Possible ways to control

Three main ways to control the disease:
@ decrease the transmission rates 771 , between humans and rodents

@ increase the disinfestation rates 6 » of humans to shorten the
duration of infestation of humans
@ reduce d by culling of the rodents
First two ways: only mitigation not sufficient to eradicate the disease —
except the extreme case of decreasing 71> to zero = one may decrease

human reproduction numbers below 1 by increasing 6; , and thus
eliminate the infestation.
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Possible ways to control

Three main ways to control the disease:
@ decrease the transmission rates 771 , between humans and rodents

@ increase the disinfestation rates 6 » of humans to shorten the
duration of infestation of humans

@ reduce d by culling of the rodents

First two ways: only mitigation not sufficient to eradicate the disease —
except the extreme case of decreasing 71> to zero = one may decrease
human reproduction numbers below 1 by increasing 6; , and thus
eliminate the infestation.

Controlling the rodent population can reduce r{, 7, below 1 =
eliminate the infestation among rodents = rodent—human infestation
can be eliminated and human repr. numbers determine global
attractivity in human subsystem = increasing the disinfestation rate
among humans eliminates parasites and disease.
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