Dynamics of an infectious disease including fleas, rodents and humans

Attila Dénes

Joint work with Gergely Röst

Bolyai Institute, University of Szeged

Dénes A. (Szeged)

Disease spread by fleas and rodents

Moscow 28/6/2017 1 / 30

Ectoparasites

- parasites that live on or in the skin but not within the body
- lice, fleas, mites
- long been known as vectors of several infectious diseases including epidemic typhus and plague
- in several cases, ectoparasites are transmitted to humans from animals, most often by rodents

Plague

- tranmitted by fleas
- caused by the bacterium Yersinia pestis
- harboured by rats

Omsk hemorrhagic fever

- tranmitted by ticks
- caused by a Flavivirus
- harboured by water voles and muskrats

Disease spread by fleas and rodents

Rickettsialpox

- tranmitted by mites
- caused by caused by the bacteria Rickettsia akari
- harboured by mice

Murine typhus

- tranmitted by fleas
- caused by caused by the bacteria Rickettsia typhi
- harboured by rats

Scrub typhus

- tranmitted by trombiculid mites
- caused by the bacteria Orientia tsutsugamushi
- harboured by mice
- more than a million cases annually in Asia with more than a billion people being at risk

Mathematical model – assumptions

- an infectious disease caused by a pathogen spread by ectoparasites which are harboured by rodents
- ectoparasites might be infectious or non-infectious
- a given rodent/human can be infested only by one type of the ectoparasite (infectious or non-infectious)
- a human can be infested (infected) through adequate contact with an infested (infected) rodent or another human
- ectoparasites are not transmitted back from humans to the rodents
- due to disinfestation and/or treatment, infested and infected humans may become susceptible again

Figure: courtesy of Júlia Röst

Rodent compartments

- *R*(*t*) susceptible rodents
- *T*(*t*) rodents infested by non-infectious parasites
- *Q*(*t*) rodents infested by infectious parasites

Human compartments

- *S*(*t*) susceptible humans
- *I*(*t*) humans infested by non-infectious parasites
- *J*(*t*) humans infested by infectious parasites

Mathematical model – notations

- *A* birth rate of rodents
- *d* death rate of rodents
- β_1 transmission rate between *R* and *T*
- β_2 transmission rate between *R* and *Q*, resp. *T* and *Q*
- *B* birth rate of humans
- δ death rate of humans
- *q* disease-induced death rate of humans
- v_1 transmission rate between *S* and *I*
- v_2 transmission rate between *S* and *J*, resp. *I* and *J*
- η_1 transmission rate between *T* and *S*
- η_2 transmission rate between Q and S, resp. Q and I
- θ_1 disinfestation rate from *I*
- θ_2 disinfestation/recovery rate from *J*

Mathematical model

$$\begin{split} R'(t) &= A - \beta_1 R(t) T(t) - \beta_2 R(t) Q(t) - dR(t), \\ T'(t) &= \beta_1 R(t) T(t) - \beta_2 T(t) Q(t) - dT(t), \\ Q'(t) &= \beta_2 R(t) Q(t) + \beta_2 T(t) Q(t) - dQ(t), \\ S'(t) &= B - \eta_1 S(t) T(t) - \eta_2 S(t) Q(t) - v_1 S(t) I(t) - v_2 S(t) J(t) \\ &- \delta S(t) + \theta_1 I(t) + \theta_2 J(t), \\ I'(t) &= \eta_1 S(t) T(t) + v_1 S(t) I(t) - \eta_2 I(t) Q(t) - v_2 I(t) J(t) - \delta I(t) - \theta_1 I(t), \\ J'(t) &= \eta_2 S(t) Q(t) + \eta_2 I(t) Q(t) + v_2 S(t) J(t) + v_2 I(t) J(t) \\ &- \delta J(t) - \rho J(t) - \theta_2 J(t), \end{split}$$

Disease spread by fleas and rodents

δS

 $(\delta + \rho)J$

 $\theta_2 J$

δΙ

The rodent subsystem

$$\begin{aligned} R'(t) &= A - \beta_1 R(t) T(t) - \beta_2 R(t) Q(t) - dR(t), \\ T'(t) &= \beta_1 R(t) T(t) - \beta_2 T(t) Q(t) - dT(t), \\ Q'(t) &= \beta_2 R(t) Q(t) + \beta_2 T(t) Q(t) - dQ(t) \end{aligned}$$

Equilibria

$$E_R = \begin{pmatrix} \frac{A}{d}, 0, 0 \end{pmatrix}, \qquad E_T = \begin{pmatrix} \frac{d}{\beta_1}, \frac{A}{d} - \frac{d}{\beta_1}, 0 \end{pmatrix}$$
$$E_Q = \begin{pmatrix} \frac{d}{\beta_2}, 0, \frac{A}{d} - \frac{d}{\beta_2} \end{pmatrix}, \qquad E_{TQ} = \begin{pmatrix} \frac{A\beta_2}{d\beta_1}, \frac{d}{\beta_2} - \frac{A\beta_2}{d\beta_1}, \frac{A}{d} - \frac{d}{\beta_2} \end{pmatrix}.$$

Dénes A. (Szeged)

Disease spread by fleas and rodents

Moscow 28/6/2017

12 / 30

Reproduction numbers

$$r_1 = \frac{A\beta_1}{d^2}, \qquad r_2 = \frac{A\beta_2}{d^2}, \qquad r_3 = \frac{\beta_1 d^2}{\beta_2^2 A}$$

Local stability

- E_R is LAS if $r_1 < 1$ and $r_2 < 1$ and unstable if $r_1 > 1$ or $r_2 > 1$
- E_T is LAS if $r_1 > 1$ and $r_2 < 1$
- E_Q is LAS if $r_2 > 1$ and $r_3 < 1$
- E_{TQ} is LAS if $r_2 > 1$ and $r_3 > 1$

Definition

 $X \neq \emptyset$ and $\rho \colon X \to \mathbb{R}_+$ $\Phi \colon \mathbb{R}_+ \times X \to X$ is uniformly weakly ρ -persistent, if $\exists \epsilon > 0$:

 $\limsup_{t\to\infty}\rho(\Phi(t,x))>\varepsilon\qquad\forall x\in X,\ \rho(x)>0.$

 Φ is uniformly (strongly) ρ -persistent if $\exists \epsilon > 0$:

$$\liminf_{t\to\infty}\rho(\Phi(t,x))>\varepsilon\qquad\forall x\in X,\ \rho(x)>0.$$

Definition

 $M \subseteq X$ is weakly ρ -repelling if $\nexists x \in X : \rho(x) > 0$ and $\Phi(t, x) \to M$ as $t \to \infty$.

► 4 Ξ ►

Theorem

R(t) is always uniformly persistent. T(t) is uniformly persistent if $r_1 > 1$ and $r_2 < 1$ as well as if $r_2 > 1$ and $r_3 > 1$. Q(t) is uniformly persistent if $r_2 > 1$.

Proof

R(t): method of fluctuation $\exists t_k \to \infty : R(t_k) \to R_{\infty} \coloneqq \liminf_{t \to \infty} R(t) \text{ and } R'(t_k) \to 0 \text{ as } k \to \infty$ $\Rightarrow R'(t_k) + \beta_1 R(t_k) T(t_k) + \beta_2 R(t_k) Q(t_k) = A$ using $0 \le T^{\infty} \le \frac{A}{d}$ and $0 \le Q^{\infty} \le \frac{A}{d}$ we obtain $R_{\infty} \ge \frac{d}{\beta_1 + \beta_2}$

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト … ヨ

Proof

T(t) and Q(t): persistence theory (Smith & Thieme)

$$X_T := \{ (R, T, Q) \in \mathbb{R}^3 : T = 0 \}$$
 extinction space

$$\Omega \coloneqq \bigcup_{X_T} \omega(R,T,Q)$$

 $\Omega = \{E_R\}$ or $\Omega = \{E_R, E_Q\}$: acyclic, invariant, isolated, compact

 ${E_R}, {E_Q}$ is weakly *T*-repelling, i.e. \nexists solution with $\lim_{t\to\infty}(R, T, Q) = E_R$ (or E_Q) with T(t) > 0

The rodent subsystem – global stability

Theorem

- E_R is GAS if $r_1 < 1$ and $r_2 < 1$.
- E_T is GAS on $X \setminus X_T$ if $r_1 > 1$ and $r_2 < 1$. E_R is GAS on X_T .
- E_Q is GAS on $X \setminus X_Q$ if $r_2 > 1$ and $r_3 < 1$. E_R is GAS on X_Q if $r_1 < 1$ and E_T is GAS on X_Q if $r_1 > 1$.
- E_{TQ} is GAS on $X \setminus (X_T \cup X_Q)$ if $r_2 > 1$ and $r_3 > 1$. E_T is GAS on X_Q and E_Q is GAS on X_T .

Proof

Introduce $F(t) \coloneqq R(t) + T(t)$ to obtain

$$F'(t) = A - \beta_2 F(t)Q(t) - dF(t),$$

$$Q'(t) = \beta_2 F(t)Q(t) - dQ(t).$$

< D > < A

Proof

Apply the Dulac function 1/Q:

$$\frac{\partial}{\partial F}\frac{A-\beta_2FQ-dF}{Q} + \frac{\partial}{\partial Q}\frac{\beta_2FQ-dQ}{Q} = -\beta_2 - \frac{d}{Q} < 0.$$

to obtain that there is no periodic solution and all solutions tend to one of the two equilibria $\left(\frac{A}{d}, 0\right)$ and $\left(\frac{d}{\beta_2}, \frac{A}{d} - \frac{d}{\beta_2}\right)$

If $r_2 < 1$, then only $\left(\frac{A}{d}, 0\right)$ exists $\Rightarrow Q(t) \rightarrow 0$ and $F(t) \rightarrow \frac{A}{d} \Rightarrow$

$$T'(t) = \gamma T(t) - \beta_1 T^2(t)$$
 with $\gamma = \left(\frac{A\beta_1}{d} - d\right)$

nontrivial solutions: $\frac{Ce^{\gamma t}}{1+\frac{\beta_1}{\alpha}Ce^{\gamma t}}$

If $r_1 < 1 \Rightarrow T(t) \rightarrow 0$, if $r_1 > 1 \Rightarrow T(t) \rightarrow \frac{A}{d} - \frac{d}{\beta_1}$

< ∃⇒

Proof

If $r_2 > 1 \Rightarrow$ both equilibria exist Persistence of $Q(t) \Rightarrow Q(t) \rightarrow \frac{A}{d} - \frac{d}{\beta_2} \Rightarrow$ $T'(t) = \gamma T(t) - \beta_1 T^2(t)$ with $\gamma = \left(\frac{d\beta_1}{\beta_2} - \frac{A\beta_2}{d}\right)$ If $r_3 < 1 \Rightarrow T(t) \rightarrow 0$, if $r_3 > 1 \Rightarrow T(t) \rightarrow \frac{d}{\beta_2} - \frac{A\beta_2}{d\beta_1}$

$$\begin{split} S'(t) &= B - \eta_1 T^* S(t) - \eta_2 Q^* S(t) - \nu_1 S(t) I(t) - \nu_2 S(t) J(t) \\ &- \delta S(t) + \theta_1 I(t) + \theta_2 J(t), \\ I'(t) &= \eta_1 T^* S(t) + \nu_1 S(t) I(t) - \eta_2 Q^* I(t) - \nu_2 J(t) I(t) - \delta I(t) - \theta_1 I(t), \\ J'(t) &= \eta_2 Q^* S(t) + \eta_2 Q^* I(t) + \nu_2 S(t) J(t) + \nu_2 I(t) J(t) \\ &- \delta J(t) - \rho J(t) - \theta_2 J(t) \end{split}$$

900

$$\begin{split} S'(t) &= B - \eta_1 T^* S(t) - \eta_2 Q^* S(t) - \nu_1 S(t) I(t) - \nu_2 S(t) J(t) \\ &- \delta S(t) + \theta_1 I(t) + \theta_2 J(t), \\ I'(t) &= \eta_1 T^* S(t) + \nu_1 S(t) I(t) - \eta_2 Q^* I(t) - \nu_2 J(t) I(t) - \delta I(t) - \theta_1 I(t), \\ J'(t) &= \eta_2 Q^* S(t) + \eta_2 Q^* I(t) + \nu_2 S(t) J(t) + \nu_2 I(t) J(t) \\ &- \delta J(t) - \rho J(t) - \theta_2 J(t) \end{split}$$

Introduce G(t) := S(t) + I(t) to obtain

$$\begin{aligned} G'(t) &= B - \eta_2 Q^* G(t) - \nu_2 G(t) J(t) - \delta G(t) + \theta_2 J(t), \\ J'(t) &= \eta_2 Q^* G(t) + \nu_2 G(t) J(t) - \delta J(t) - \rho J(t) - \theta_2 J(t). \end{aligned}$$

20 / 30

Apply Bendixson–Dulac criterion with Dulac function 1/*J* and Poincaré–Bendixson theorem

$$\frac{\partial}{\partial G}\frac{B - \eta_2 Q^*G - \nu_2 GJ - \delta G + \theta_2 J}{J} + \frac{\partial}{\partial J}\frac{\eta_2 Q^*G + \nu_2 GJ - \delta J - \rho J - \theta_2 J}{J}$$
$$= -\frac{\eta_2 Q^*}{J} - \nu_2 - \frac{\delta}{J} - \frac{\eta_2 G}{J^2} < 0,$$

to obtain that all solutions tend to one of the two possible equilibria

$$E_{1} = \left(\frac{D + B\nu_{2} - \sqrt{(D - B\nu_{2})^{2} + 4B\eta_{2}Q^{*}\nu_{2}(\delta + \rho)}}{2\delta\nu_{2}}, \frac{-D + B\nu_{2} + \sqrt{(D - B\nu_{2})^{2} + 4B\eta_{2}Q^{*}\nu_{2}(\delta + \rho)}}{2(\delta + \rho)\nu_{2}}\right)$$

and
$$E_{2} = \left(\frac{D + B\nu_{2} + \sqrt{(D - B\nu_{2})^{2} + 4B\eta_{2}Q^{*}\nu_{2}(\delta + \rho)}}{2\delta\nu_{2}}, \frac{-D + B\nu_{2} - \sqrt{(D - B\nu_{2})^{2} + 4B\eta_{2}Q^{*}\nu_{2}(\delta + \rho)}}{2(\delta + \rho)\nu_{2}}\right)$$

with
$$D = \delta^2 + Q^* \eta_2 \rho + \delta (Q^* \eta_2 + \theta_2 + \rho)$$

Case 1:
$$r_2 > 1 \Leftrightarrow Q^* > 0$$

only E_1 exists \Rightarrow all solutions tend to E_1

Case 2:
$$r_2 \le 1 \Leftrightarrow Q^* = 0$$

The above system simplifies to

$$G'(t) = B - \nu_2 G(t)J(t) - \delta G(t) + \theta_2 J(t),$$

$$J'(t) = \nu_2 G(t)J(t) - \delta J(t) - \rho J(t) - \theta_2 J(t)$$

which has the two equilibria $e_1 \coloneqq \left(\frac{B}{\delta}, 0\right)$ and $e_2 \coloneqq \left(\frac{\delta + \theta_2 + \rho}{\nu_2}, \frac{B\nu_2 - \delta(\delta + \theta_2 + \rho)}{\nu_2(\delta + \rho)}\right)$ e_2 only exists if $\mathcal{R}_0^J \coloneqq \frac{B\nu_2}{\delta(\delta + \theta_2 + \rho)} > 1$ If $\mathcal{R}_0^J \le 1 \Rightarrow$ all solutions tend to e_1 If $\mathcal{R}_0^J > 1 \Rightarrow J(t)$ strongly persistent \Rightarrow all positive solutions tend to e_2

Substitute the limit J^* into the first two equations of the human subsystem:

$$\begin{split} S'(t) &= B - \eta_1 T^* S(t) - \eta_2 Q^* S(t) - \nu_1 S(t) I(t) - \nu_2 J^* S(t) \\ &- \delta S(t) + \theta_1 I(t) + \theta_2 J^*, \\ I'(t) &= \eta_1 T^* S(t) + \nu_1 S(t) I(t) - \eta_2 Q^* I(t) - \nu_2 J^* I(t) - \delta I(t) - \theta_1 I(t) \end{split}$$

having two possible equilibria

$$\mathcal{E}_{1} = \left(\frac{\nu_{1}(B+\theta_{2}J^{*})+P-\sqrt{(\nu_{1}(B+\theta_{2}J^{*})-P)^{2}+H}}{2\nu_{1}K}, \frac{\nu_{1}(B+\theta_{2}J^{*})-P+\sqrt{(\nu_{1}(B+\theta_{2}J^{*})-P)^{2}+H}}{2\nu_{1}K}\right)$$

and

$$\mathcal{E}_{2} = \left(\frac{\nu_{1}(B+\theta_{2}J^{*})+P+\sqrt{(\nu_{1}(B+\theta_{2}J^{*})-P)^{2}+H}}{2\nu_{1}K}, \frac{\nu_{1}(B+\theta_{2}J^{*})-P-\sqrt{(\nu_{1}(B+\theta_{2}J^{*})-P)^{2}+H}}{2\nu_{1}K}\right)$$

with $K = (\delta + \eta_2 Q^* + \nu_2 J^*)$, $P = K(\delta + \theta_1 + \eta_1 T^* + \eta_2 Q^* + \nu_2 J^*)$ and $H = 4\eta_1 \nu_1 T^* (B + \theta_2 J^*) K$

Dénes A. (Szeged)

Moscow 28/6/2017 23 / 30

Apply Bendixson–Dulac criterion with Dulac function 1/I and Poincaré–Bendixson theorem to show that all solutions tend to an equilibrium:

$$\frac{\partial}{\partial S} \frac{B - \eta_1 T^* S - \eta_2 Q^* S - \nu_1 S I - \nu_2 J^* S - \delta S + \theta_1 I + \theta_2 J^*}{I} + \frac{\partial}{\partial I} \frac{\eta_1 T^* S + \nu_1 S I - \eta_2 Q^* I - \nu_2 J^* I - \delta I - \theta_1 I}{I} = \frac{-\eta_1 T^*}{I} - \frac{\eta_2 Q^*}{I} - \nu_1 - \frac{\nu_2 J^*}{I} - \frac{\delta}{I} - \frac{\eta_1 T^* S}{I^2} < 0$$

 \mathcal{E}_2 only exists if $T^* = 0$

If $T^* > 0$ and $Q^* > 0 \Leftrightarrow r_2 > 1$ and $r_3 > 1 \Rightarrow$ all solutions tend to $(\mathcal{E}_1^1, \mathcal{E}_1^2, \mathcal{E}_1^2)$

If $T^* > 0$ and $Q^* = 0$, $\Leftrightarrow r_1 > 1$ and $r_2 \le 1 \Rightarrow \mathcal{R}_0^J$ determines the limit of J(t)

If $r_1 > 1$, $r_2 \le 1$ and $\mathcal{R}_0^J \le 1 \Leftrightarrow$ all solutions of tend to $(\mathcal{E}_1^1, \mathcal{E}_1^2, 0)$,

If $r_1 > 1$, $r_2 \le 1$ and $\mathcal{R}_0^J > 1 \Leftrightarrow$ all solutions tend to

$$\left(\mathcal{E}_1^1, \mathcal{E}_1^2, \frac{B\nu_2 - \delta(\delta + \theta_2 + \rho)}{\nu_2(\delta + \rho)}\right)$$

If $T^* = 0$ ($r_1 < 1$ and $r_2 < 1$), the system reduces to

$$\begin{split} S'(t) &= B - \eta_2 Q^* S(t) - \nu_1 S(t) I(t) - \nu_2 S(t) J^* \\ &- \delta S(t) + \theta_1 I(t) + \theta_2 J^*, \\ I'(t) &= \nu_1 S(t) I(t) - \eta_2 Q^* I(t) - \nu_2 I(t) J^* - \delta I(t) - \theta_1 I(t), \end{split}$$

having the two equilibria

$$\mathcal{E}_1 = \left(\frac{\eta_2 Q^* + \nu_2 J^* + \delta + \theta_1}{\nu_1}, \frac{\nu_1 (B + \theta_2 J^*) - (\eta_2 Q^* + \nu_2 J^* + \delta)(\eta_2 Q^* + \nu_2 J^* + \delta + \theta_1)}{\nu_1 (\eta_2 Q^* + \nu_2 J^* + \delta)}\right),$$
 and

$$\mathcal{E}_2 = \left(\frac{B+\theta_2 J^*}{\eta_2 Q^*+\nu_2 J^*+\delta}, 0\right),$$

with \mathcal{E}_2 only existing if

$$\mathcal{R}_0^I \coloneqq \frac{\nu_1(B+\theta_2J^*)}{(\eta_2Q^*+\nu_2J^*+\delta)(\eta_2Q^*+\nu_2J^*+\delta+\theta_1)} > 1.$$

If $\mathcal{R}_0^I \leq 1$, only \mathcal{E}_2 exists \Rightarrow all solutions tend to $\left(\frac{B+\theta_2 J^*}{\eta_2 Q^*+\nu_2 J^*+\delta}, 0, J^*\right)$

If $\mathcal{R}_0^I > 1 \Rightarrow I(t)$ is strongly persistent \Rightarrow all positive solutions of the *SI* system tend to \mathcal{E}_1

If $Q^* > 0$ ($r_2 > 1$) $\Rightarrow \exists !$ equilibrium of the *GJ* system $\Rightarrow J(t)$ tends to E_1^2

If $r_2 > 1$ and $\mathcal{R}_0^I \le 1 \Rightarrow$ all solutions tend to $\left(\frac{B + \theta_2 E_1^2}{\eta_2 \left(\frac{A}{d} - \frac{d}{\beta_2}\right) + \nu_2 E_1^2 + \delta}, 0, E_1^2\right)$

If $r_2 > 1$ and $\mathcal{R}_0^I > 1$, all solutions tend to

$$\left(\frac{\eta_2 Q^* + \nu_2 E_1^2 + \delta + \theta_1}{\nu_1}, \frac{\nu_1 (B + \theta_2 E_1^2) - (\eta_2 Q^* + \nu_2 E_1^2 + \delta)(\eta_2 Q^* + \nu_2 E_1^2 + \delta + \theta_1)}{\nu_1 (\eta_2 Q^* + \nu_2 E_1^2 + \delta)}, E_1^2\right)$$

with $Q^* = \left(\frac{A}{d} - \frac{d}{\beta_2}\right)$.

If
$$r_2 \leq 1$$
 ($Q^* = 0$) $\Rightarrow \mathcal{R}_0^J$ determines $\lim_{t\to\infty} J(t)$.
If $r_1 \leq 1, r_2 \leq 1, \mathcal{R}_0^J \leq 1, \mathcal{R}_0^I \leq 1 \Rightarrow$ all solutions tend to
 $\left(\frac{B}{\delta}, 0, 0\right)$.

If $r_1 \leq 1, r_2 \leq 1, \mathcal{R}_0^J \leq 1, \mathcal{R}_0^I > 1$, all solutions tend to

$$\left(\frac{\delta+\theta_1}{\nu_1},\frac{B}{\delta}-\frac{\delta+\theta_1}{\nu_1},0\right).$$

If $r_1 \leq 1, r_2 \leq 1, \mathcal{R}_0^J > 1, \mathcal{R}_0^I \leq 1$, all solutions tend to

$$\left(\frac{\delta+\theta_{2}+\rho}{\nu_{2}},0,\frac{\nu_{2}B-\delta(\delta+\theta_{2}+\rho)}{\nu_{2}(\delta+\rho)}\right)$$

If $r_1 \leq 1, r_2 \leq 1, \mathcal{R}_0^J > 1, \mathcal{R}_0^I > 1$, all solutions tend to

$$\left(\frac{\nu_2 B + \theta_1 \rho + \delta(\theta_1 - \theta_2)}{\nu_1(\delta + \rho)}, \frac{\delta \theta_2 - \nu_2 B}{\nu_1(\delta + \rho)} + \frac{\delta + \theta_2 + \rho}{\nu_2} - \frac{\theta_1}{\nu_1}, \frac{\nu_2 B - \delta(\delta + \theta_2 + \rho)}{\nu_2(\delta + \rho)}\right).$$

Three main ways to control the disease:

- decrease the transmission rates $\eta_{1,2}$ between humans and rodents
- increase the disinfestation rates θ_{1,2} of humans to shorten the duration of infestation of humans
- reduce *d* by culling of the rodents

Three main ways to control the disease:

- decrease the transmission rates $\eta_{1,2}$ between humans and rodents
- increase the disinfestation rates θ_{1,2} of humans to shorten the duration of infestation of humans
- reduce *d* by culling of the rodents

First two ways: only mitigation not sufficient to eradicate the disease – except the extreme case of decreasing $\eta_{1,2}$ to zero \Rightarrow one may decrease human reproduction numbers below 1 by increasing $\theta_{1,2}$ and thus eliminate the infestation.

Three main ways to control the disease:

- decrease the transmission rates $\eta_{1,2}$ between humans and rodents
- increase the disinfestation rates $\theta_{1,2}$ of humans to shorten the duration of infestation of humans
- reduce *d* by culling of the rodents

First two ways: only mitigation not sufficient to eradicate the disease – except the extreme case of decreasing $\eta_{1,2}$ to zero \Rightarrow one may decrease human reproduction numbers below 1 by increasing $\theta_{1,2}$ and thus eliminate the infestation.

Controlling the rodent population can reduce r_1, r_2 below $1 \Rightarrow$ eliminate the infestation among rodents \Rightarrow rodent \rightarrow human infestation can be eliminated and human repr. numbers determine global attractivity in human subsystem \Rightarrow increasing the disinfestation rate among humans eliminates parasites and disease.

30 / 30

イロト イポト イヨト イヨト