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POPULATION GROWTH 

Models of population growth processes are used to describe 
 experimental data and predict future trends in many areas 

Ecology	

Wild-Life	Biology		
&	ConservaEon	

Demography	 Epidemiology	

	Natural	Resources	
HarvesEng	

Population 

Collection of units capable of growth 

[	viruses,		cells,		insects,	birds,		fishes,		humans	]	



What	determines	the	distribuEon	and	abundance	
of	a	populaEon	?	

BIRTH 
IMMIGRATION 

DEATH 
EMIGRATION 
HARVESTING 

NET GROWTH 

SURVIVAL 
(dynamics) 

EXTINCTION 
(size dependence, mode) 

(DifferenEal	equaEons)	

Types of Growth 

Continuous growth	where generations overlap 

Discrete growth	where 
(Discrete	equaEons)	(a)   generations do not overlap 

(b)   there is age and stage structure of birth 



Time series of different populations 

( Davidson, 1938 ) 

(a) Stored product beetle 
C. maculatus 

(b) Cases of measles 

(c) Flour beetle (T. casteneum) 

Dennis et al 1995 

Schafer & Kot, 
1985 

(b) Prey-Predator system 
(Southern, 1970) 

( Pearl, 1927 ) 

(b) Prey-Predator system    
 (Maclulick, 1937) 

How do natural populations behave ? 



Continuous breeding with overlapping generations 
 

Simplest differential equation model for single population is 
the Logistic Growth Model 

r =  growth rate 
K = carrying     
      capacity of   
      environment 

In logistic growth model a single population can only grow, 
stabilise or die depending on r and K. 

can induce other  
types of dynamics 

Environmental noise  
Time lag 
Growth rate regulation 

In unlimited environmental 
resources 

In limited-resources 



Discrete	PopulaEon	Growth	Dynamics		

single	species	

and		

interacEng	species	



Discrete growth with non-overlapping generations  

A single population 
in this model shows 

a variety of 
dynamics with 

different values of r 

Nt+1 = [1+ r’(1-Nt /K)] Nt 

X =[r/(r+1)] (N/K)   
r' = (1+r) 

OSCILLATORY 

CHAOTIC 

STABLE 

A simple model for discrete growth        Nt+1 = f(Nt ) 

Discrete Logistic Equation 

Nt 

f(Nt ) 

“Hump” like shape with a unique maximum 

Xt+1 =  r’ Xt(1 – Xt) 



Logistic map         X(t+1) = r X(t)[ 1 - X(t)] 
Exponential map  X(t+1) = X(t)exp{r [1 - X(t)]} 
Hassell map     X(t+1) = r X(t) / (1 - X(t))b 

Bellows map     X(t+1) = r X(t) / (1 - X(t)b) 
r - intrinsic growth rate 

X - population size (scaled by carrying capacity). 

Simple models for discrete single populations 

Skellam, Biometrika, 1951; Ricker, J.Fish.Res.Bd.Can., 1954; May, Nature, 1976; Hassell, J.Anim.,Ecol., 1976; Bellows, 
J.Anim.Ecol., 1981. 



All unidimensional “single-hump” discrete models show 
similar sequence of dynamics - stable to oscillatory to 

chaos through period doubling bifurcations - with 
increasing growth rate. 

A general class of models exhibiting “universal” dynamics. 
(Feigenbaum 1978 J. Stat. Phys., May 1976 Nature, Oster & May 1976 Am.Nat.)  

Used interchangeably in Ecology to describe population 
growth. 

Seemingly stochastic behaviour observed in data can be 
explained by complex, chaotic dynamics arising from 
nonlinearities in these simple deterministic models.  
Chaos is associated with high risk of extinction and 

hence should be evolutionary selected against. 

Problems 



Hassell map 
 

 X(t+1) = r X(t) / (1 - X(t)) b 
 

boundaries in the (R-b) plane are 
obtained theoretically for different 

dynamics 

Hassell (1974, 1976) J. Anim. Ecol. A large scale study 

How do natural populations behave ? 

Questions:  Is the erratic variation in population size due to 
noise ? Or, chaos ? 

Why do these populations show stable dynamics in nature ?
Do ecological processes play any role in stabilising dynamics ? 



Interacting Species Population:   Host - Parasitoid system 

 β = 4 quasi-periodic 

β = 5   chaotic 

r = 4 
In absence of the parasite, 

the host has Logistic growth, 
and exhibits a variety of 

dynamics, from equilibrium 
to chaos through period-

doubling bifurcations with 
increasing µ, in its 

population dynamics.  

Parasite	
grows	only	
in	presence	
of	the	host	

 Ht+1 = f(Ht,Pt) = rHt(1-Ht)exp[-βPt]     
 Pt+1 = g(Ht,Pt) = cHt(1-exp[-βPt])            

 Ht, Pt - host & parasite population size at generation t 
 r  - intrinsic reproductive rate of host in absence of parasite 
 c  - average number of viable eggs laid by a parasite on a host  
 β  - searching efficiency of parasite to attack the host   
 exp[-βPt] - fraction of host population escaping parasitism 



The bifurcation diagram of H with β 
for four different values of r.  

Thus ecological interactions (e.g., trophic relationship between species) 
can modulate population dynamics and lend stability 



 Dynamics of populations under 
constant migration   

single species 

and  

interacting species 



Population  Interacting 
(multiple patches with 

migration corridors) 
Single 

(isolated patch ) 

Most populations in nature 
are isolated subpopulations 

connected through migration  

Immigration   Increases size 
Emigration     Reduces size, Extinction 

Similar ecological processes are  dispersal, harvesting, recruitment, culling, 
release, refuge, immunize/quarantine, etc. 

Single discrete population models under constant migration (L) 

Logistic map         X(t+1) = r X(t)[ 1 - X(t)] 

Exponential map  X(t+1) = X(t)exp{r [1 - X(t)]} 

Hassell map     X(t+1) = r X(t) / (1 - X(t))b 

Bellows map     X(t+1) = r X(t) / (1 - X(t)b). 



Sinha et al, Phys Rev Lett, Phys Rev E,  PNAS (USA), etc 

(1)  Similar models (same universality class) respond differently to 
ecological processes.  

(3)  Maps with “tail” (inflexion point) exhibit the survival-extinction-survival 
behaviour 

Nonlinearity of density-dependence is important. 

L 

r 

+ L - L 

r 

L 

 Discrete population models under constant migration (L) 

(a)   Logistic map             X(t+1) = r X(t)[ 1 - X(t)] 
(b)   Exponential map      X(t+1) = X(t)exp{r [1 - X(t)]} 
(c)   Hassell map     X(t+1) = r X(t) / (1 - X(t))b 

(d)   Bellows map     X(t+1) = r X(t) / (1 - X(t)b). 
± L 



 β = 3.5 quasi-periodic 

L=0,  r = 4 

 Ht+1 = rHt(1-Ht)exp[-βPt] + L1  
 Pt+1 = cHt(1-exp[-βPt]) + L2           

Constant Migration in Host - Parasitoid system 

Migration of Host only 

Migration of Parasite only 

Equal migration of both Host & Parasite 

Population 
dynamics of Host 

and Parasitoid show 
opposite effects for 
migrations of each 

species. 
 

Ecological 
interactions regulate 
dynamic response. 

 Sinha et al Phys Rev E, PhysA, etc. 



MetapopulaEon	and	types	of	connecEvity	

	

Host-Parasitoid	metapopulaEon	dynamics	
under	different	connecEviEes	



Metapopulation 
Subpopulations interacting through migration/dispersal 

 

Migration depends on Spatial Connectivity  
(Random; Regular - “n” nearest neighbour, “Small-World”, 

Long distance; All-to-all) 

A Model Metapopulation in one dimension 
(Coupled map lattice (CML) model)  

 xn+1(i) = (1 – ε )f(xn(i) + (ε/2)[ f(xn(i-1)+f(xn(i+1)] 

 n = 1,2,….,N discrete time steps,     
 I = 1,2,….,L     discrete lattice sites  
 ε = diffusion/coupling to nearest patches,   
f(x) = local population growth function or 

 the dynamical system  
     = rx(1-x))  for Logistic map 

(periodic boundary conditions)  



In 93% cases 
the lattice 

shows 
synchronised 

spatiotemporal 
behaviour, few 

developed  
spiral patterns 

SPATIOTEMPORAL DYNAMICS OF HOST-PARASITE TWO DIMENSIONAL LATTICE 
METAPOPULATION WITH DISPERSAL TO FOUR NEAREST-NEIGHBOURS 

Ht'(j,k) = (1- d1)Ht(j,k)+ d1/(nn){Ht(j-1,k)+Ht(j+1,k)+Ht(j,k-1)+Ht(j,k+1)},       

Pt'(j,k) = (1- d2)Pt(j,k) + d2/(nn){Pt (j-1,k)+Pt(j+1,k)+ Pt(j,k-1)+Pt(j,k+1)} 

Ht+1(j,k) = rHt'(j,k)[1-Ht'(j,k)]exp[-bPt'(j,k)], 
Pt+1(j,k) = cHt'(j,k){1-exp[-bPt'(j,k)]}  

For r = 4, β = 3.5, subpopulation 
dynamics is quasi-periodic 

Ht' & Pt' are post-dispersal and Ht 
& Pt pre-dispersal host and 

parasite densities in generation t. 
No-flux boundary 



The role of heterogeneity on the spatiotemporal dynamics  
of host-parasite metapopulation 

Two types of heterogeneity 
1) Landscape Heterogeneity: Randomly distributed defective sites 

where no population can grow or disperse. Landscape fragmentation 
Creates difference in number of neighbours among sites. 

2) Demographic heterogeneity: Randomly distributed sites where the 
infectivity of parasitoids, β, were different   



Landscape fragmentation and 
heterogeneity in parasite attack rates 
induce asynchrony in spatiotemporal 

dynamics. 
Increasing vacancy increases asynchrony 

in larger number of lattices. 

[Sinha et al,, Ecol.Model.] 



The dispersal functions to the nearest 8 neighbours in a square lattice is  

Patterned heterogeneities 
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2. Single and Spatial Host-Parasite model

The discrete Host-Parasitoid model used in this study is a simple modi-
fied Nicholson-Bailey20, where the host exhibits density-dependent logistic
growth in absence of the parasitoid. In presence of the parasitoid, which
induces infection due to which that fraction of the host population can not
reproduce, and the parasitoids grow in infected hosts only. In a lattice
metapopulation scenario, where each node is a habitat that supports a HP
subpopulation, with migration taking place amongst the nearest neighbour-
ing patches, the discrete HP model takes the form:

Ht+1(s) = F (H
0
, P

0
),

Pt+1(s) = G(H
0
, P

0
), (1)

where, F (·) = H
0
µ(1�H

0
)e��P

0
and G(·) = H

0
(1� e��P

0
).

The parameters, µ and �, are the host growth rate and the parasitoid attack
rate, respectively. H

0
and P

0
are the post-dispersal host and parasitoid

population densities at any site s ⌘ (x, y) 2 L ⌘ (l ⇥ l), where, L is a
square lattice of l2 number of habitat patches. Variants of this model have
been studied by several authors13,14 while investigating di↵erent questions.
The dispersal functions to the nearest 8 neighbours in a square lattice is
given by

H
0
= (1� d1)Ht(s) +

d1
8

8X

j=1

Ht(j)

P 0 = (1� d2)Pt(s) + d2

8X

j=1

Pt(j)�
j
t (s). (2)

where, d1 and d2 are the host and parasitoid dispersal coe�cients, respec-
tively. The dispersal of the host populations from any patch is independent
of the population level of the destination patches, it simply depends on
its own population size. The parasitoid dispersal is assumed to be de-
pendent on both the host and the parasitoid densities of the neighbouring
patches13,14. The term �jt denotes the proportion of dispersing parasitoid
populations from the neighbouring sites (j’s) to site s. The functional form
of �jt is given by:

�jt (s) = CN

 
Hj

t (s)P8
i=1 H

j
t (i)

!⌘

,

where ⌘ is known as the ‘aggregation index’, and CN is a normalising con-
stant such that,

P8
i=1 �

j
t (i) = 1.

d1 and d2 are the host and parasitoid dispersal coefficients, respectively. 
The parasitoid dispersal is assumed to be dependent on both the host and 
the parasitoid densities of the neighbouring patches. The term      denotes 
the proportion of dispersing parasitoid populations from the neighbouring 
sites (j’s) to site s. The functional form is given by:  

where η is known as the ‘aggregation index’, and CN is a normalising 
constant such that,  

BIOMAT 2017 



(a) Homogeneous lattice  

(b) vacant patches 
distributed randomly  

(c) Clusters of (3 × 3) 
vacant patches 
distributed randomly. 

(d) an impermeable 
barrier of vacant sites 
dividing metapopulation 
into two parts;  

(e) with one passage,  

(f) with three passages.  

Spatial patterns in host metapopulation 
Landscape	fragmentaEon	

BIOMAT	2017	



(a) Demographically 
homogeneous landscape with 

Left: β = 4, and Right: β = 5.	

(b) La$ces	with	demographic	
heterogeneity	–	Le-:	5% randomly 
selected sites have the parasitoid 
with β = 5, while the rest have β = 
4. Right:	The opposite of Left, i.e., 
5% sites have the parasitoid with 
β = 4, while the rest have β = 5. 

(c) Left: 4% of the total sites form 
a single sub-lattice of (10 × 10) 

sites, where the parasitoid 
populations have β = 5, while the 

rest of the sites have β = 4. 	

Right: The opposite of Left, i.e., 
the single sub-lattice have 

parasitoid populations with β = 4, 
while the other sites have β = 5. 	

Spatial patterns in host metapopulation 
β = 4 – quasi-periodic, and β = 5, Chaotic dynamics.	

BIOMAT	2017	



SUMMARY 
 

²  Diverse patterns of species persistence, abundance and distribution are seen in 
nature. Ecological interactions, environmental and habitat heterogeneity, demo- 
graphic and genetic inhomogeneity - are some of the factors that shape population 
persistence, spatial distribution, and diversity of the species. 

² We have done systematic study of discrete generation single species and 
interacting Host-Parasitoid population dynamics in single isolated subpopulations 
and in metapopulations, where migration occurs between the subpopulations. We 
have shown how ecological interactions and spatial connectivities can modulate 
population dynamics. Both have significant role in altering dynamics of population 
growth. 

²  We	model	the	effect	of	various	forms	of	environmental	(landscape	and	
demographic)	heterogenei?es	on	the	spa?al	dynamics	of	host-parasitoid	
metapopula?ons.	These	different	forms	of	heterogeneity,	coupled	to	different	
connec?vity	paEerns	of	the	habitat	patches,	lead	to	evolu?on	of	different	
spa?al	paEerns	in	popula?on	distribu?ons.		

²  The	results	explore	the	roles	of	different	types	of	dispersal	barriers	and	
coexistence	of	different	genotypes	of	host	and	parasitoid	popula?ons	in	
migra?on	and	disease	spread.	They	may	also	aid	in	biodiversity	policy-making	by	
helping	in	the	design	of	conserva?on	corridors.	


