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Formation and evolution of Protein Families
Statistical Analysis of amino acids distribution.
The Sample space is organized by selecting blocks of amino acids of m
rows (protein domains) and n columns (amino acids) as obtained from a
protein database.

Figure: (m × n) block of amino acids — a representation of a protein family — an
element of the Sample space.

In order to organize a block, we consider rows with nl amino acids,
nl = n1, n2, . . . , nm. All domains such that nl < n are deleted as well as
(nl − n) amino acids on all other domains.
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Pfam Database
Biological Almanac instead of Astronomical Almanac (Ephemerides).

Table: Pfam Database Evolution

Pfam DATABASE

version year no of families no of families “Clans”class. into clans
18.0 2005 7973 1181 172
19.0 2005 8183 1399 205
20.0 2006 8296 1560 239
21.0 2006 8957 1683 262
22.0 2007 9318 1815 283
23.0 2008 10340 2016 303
24.0 2009 11912 3132 423
25.0 2011 12273 3439 458
26.0 2011 13672 4243 499
27.0 2013 14831 4563 515
28.0 2015 16230 4939 541
29.0 2015 16295 5282 559
30.0 2016 16306 5423 595
31.0 2017 16712 5996 604

The work with version 27.0 allows for comparison with data of previous
versions and the continuous prevision of data for future versions.
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Pfam Database — Version 27.0

No of families: 14831

Adopted restrictions for One-way ANOVA Statistical Analysis:

Restrictions no of families no of Clansclass. into clans

none 4563 515

100x200 blocks, 1441 267one block per family
Clans with 5 or 1069 68more families
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Probability Distribution

We associate a vector pj to each column of m rows:

pj =

pj(A)
...

pj(Y )

 , n vectors of 20 components

pj(a) = nj(a)
m

nj(a) is the number of occurrences of amino acid “a” in the jth column.

a = A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y

∑
a

pj(a) = 1 , j = 1, 2, . . . , n
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Probability Distribution

We now consider the joint probability pjk(a, b) of finding the amino acid
a in column j and the amino acid b in column k:

pjk(a, b) = njk(a, b)
m

∑
a

∑
b

pjk(a, b) = 1 , j = 1, 2, . . . , (n− 1)
k = (j + 1), (j + 2), . . . , n

For a block (m× n) we have:

pjk =

pjk(A,A) ... pjk(A,Y )
...

. . .
...

pjk(Y,A) ... pjk(Y,Y )

 ,
n(n− 1)

2
square matrices of 400

elements each
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Sharma-Mittal Set of Entropy Measures

(SM)j(r, s) = − 1
1− r

(
1−

(∑
a

(
pj(a)

)s) 1−r
1−s
)

r → s−−−→ Hj(s) = − 1
1− s

(
1−

∑
a

(
pj(a)

)s)Havrda-Charvat
Entropy

s→ 1−−−→ Sj = −
∑
a

pj(a) log pj(a) Shannon Entropy

(SM)jk(r, s) = − 1
1− r

(
1−

(∑
a

∑
b

(
pjk(a, b)

)s) 1−r
1−s
)

r → s−−−→ Hjk(s) = − 1
1− s

(
1−

∑
a

∑
b

(
pjk(a, b)

)s)Havrda-Charvat
Entropy

s→ 1−−−→ Sjk = −
∑
a

∑
b

pjk(a, b) log pjk(a, b) Shannon Entropy



8/36

Mutual Information

Mjk(r, s) = 1
1− r

1−
( ∑

a

∑
b

(
pjk(a, b)

)s
∑
a

∑
b

(
pj(a)pk(b)

)s
) 1−r

1−s


r → s−−−→Mjk(s) = 1

1− s

1−

∑
a

∑
b

(
pjk(a, b)

)s
∑
a

∑
b

(
pj(a)pk(b)

)s


s→ 1−−−→Mjk(1) = Sj + Sk − Sjk

Mjk(r, s) ≥ 0 , (SM)jk(r, s)−Mjk(r, s) ≥ 0

0 ≤ (SM)jk(r, s)−Mjk(r, s) ≤ (SM)jk(r, s)

0 ≤ 1− Mjk(r, s)
(SM)jk(r, s) ≤ 1
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Jaccard Entropy Measure

Jjk(r, s) = 1− Mjk(r, s)
(SM)jk(r, s)

r → s−−−→ Jjk(s) = 1− Mjk(s)
Hjk(s)

The corresponding mean Jaccard measure is given by:

J(r, s) = 2
n(n− 1)

∑
j

∑
k

Jjk(r, s)

The mean Sharma-Mittal for simple and joint probability are, respectively:

(SM)(r, s) = 1
n

∑
j

(SM)j(r, s)

(SM)(r, s) = 2
n(n− 1)

∑
j

∑
k

(SM)jk(r, s)
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Mean Jaccard X Mean Havrda-Charvat (Joint Probability)

Figure: Histograms of Mean Jaccard (left side) and Mean Havrda-Charvat (right side)
of 1069 families with s = 0.1.
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Mean Jaccard X Mean Havrda-Charvat (Joint Probability)

Figure: Histograms of Mean Jaccard (left side) and Mean Havrda-Charvat (right side)
of 1069 families with s = 0.5.
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Mean Jaccard X Mean Havrda-Charvat (Joint Probability)

Figure: Histograms of Mean Jaccard (left side) and Mean Havrda-Charvat (right side)
of 1069 families with s = 1.0.
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Mean Jaccard X Mean Havrda-Charvat (Joint Probability)

Figure: Histograms of Mean Jaccard (left side) and Mean Havrda-Charvat (right side)
of 1069 families with s = 1.3.
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F-test: F → Fisher - ANOVA

Groups of protein families (“Clans”) CL0001, CL0002, . . . , CL000N with
Φ1, Φ2, . . . , ΦN protein families, respectively and ϕ1, ϕ2, . . . , ϕN the
number of protein families on each statistical sample after the restriction
to families containing m× n blocks of amino acids, respectively.

〈(SM)j(Φ1)〉, 〈(SM)j(Φ2)〉, . . . , 〈(SM)j(ΦN )〉 — generic means
around the “Clans”.

〈(SM)j(ϕ1)〉, 〈(SM)j(ϕ2)〉, . . . , 〈(SM)j(ϕN )〉 — means per columns
of the (m× n) blocks of amino acids.
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F-test: F → Fisher - ANOVA
The entropy measure variables will be (SM)pj (ϕl), where
j = 1, 2, . . . , n (columns), p = 1, 2, . . . , ϕl (families of the lth “Clan”),
l = 1, 2, . . . , N (“Clans”).

〈(SM)j〉 = 1
N∑
l=1

ϕl

N∑
l=1

ϕl∑
p=1

(SM)pj (ϕl) — overall mean per column of
(m× n) blocks of amino acids

〈(SM)j(ϕl)〉 = 1
ϕl

ϕl∑
p=1

(SM)pj (ϕl) — “Clan” mean per column j of the
(m× n) blocks of amino acids

The standard deviations can be obtained from:(
N∑
l=1

ϕl − 1
)
σ2
j =

N∑
l=1

ϕl∑
p=1

(
(SM)pj (ϕl)− 〈(SM)j(ϕl)〉

)2

(ϕl − 1)σ2
jϕl

=
ϕl∑
p=1

(
(SM)pj (ϕl)− 〈(SM)j(ϕl)〉

)2
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F-test: F → Fisher - ANOVA

We then have:(
N∑
l=1

ϕl − 1
)
σ2
j︸ ︷︷ ︸

SST
Sum of squares total

measures — variation of the

data (SM)p
j

(ϕl) around the

overall mean 〈(SM)j〉

=

N∑
l=1

(ϕl − 1)σ2
jϕl︸ ︷︷ ︸

SSE
Variability within group

mean — variation of the

data (SM)p
j

(ϕl) around its

group mean 〈(SM)j(ϕl)〉

+

N∑
l=1

ϕl (〈(SM)j(ϕl)〉 − 〈(SM)j〉)2

︸ ︷︷ ︸
SSG

Variability between group means

— variation of the group

means 〈(SM)j(ϕl)〉 around the

overall mean 〈(SM)j〉

To check no of independent terms:

N∑
l=1

ϕl − 1 =
N∑
l=1

(ϕl − 1) +N − 1 =
N∑
l=1

ϕl −N +N − 1
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F-test: F → Fisher - ANOVA

Groups of protein families (“Clans”) CL0001, CL0002, . . . , CL000N with
Φ1, Φ2, . . . , ΦN protein families, respectively and ϕ1, ϕ2, . . . , ϕN the
number of protein families on each statistical sample after the restriction
to families containing m× n blocks of amino acids, respectively.

〈(SM)jk(Φ1)〉, 〈(SM)jk(Φ2)〉, . . . , 〈(SM)jk(ΦN )〉 — generic means
around the “Clans”.

〈(SM)jk(ϕ1)〉, 〈(SM)jk(ϕ2)〉, . . . , 〈(SM)jk(ϕN )〉 — means by a pair
of columns jk of the (m× n) blocks of amino acids.
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F-test: F → Fisher - ANOVA
The entropy measure variables will be (SM)pjk(ϕl), where
j = 1, 2, . . . , n− 1, k = (j + 1), (j + 2), . . . , n, p = 1, 2, . . . , ϕl (families
of the lth “Clan”), l = 1, 2, . . . , N (“Clans”).

〈(SM)jk〉 = 1
N∑
l=1

ϕl

N∑
l=1

ϕl∑
p=1

(SM)pjk(ϕl) — overall mean per column of
(m× n)blocks of amino acids

〈(SM)jk(ϕl)〉 = 1
ϕl

ϕl∑
p=1

(SM)pjk(ϕl) —“Clan” mean per column jof the
(m× n)blocks of amino acids

The standard deviations can be obtained from:(
N∑
l=1

ϕl − 1
)
σ2
jk =

N∑
l=1

ϕl∑
p=1

(
(SM)pjk(ϕl)− 〈(SM)jk(ϕl)〉

)2

(ϕl − 1)σ2
jkϕl

=
ϕl∑
p=1

(
(SM)pjk(ϕl)− 〈(SM)jk(ϕl)〉

)2
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F-test: F → Fisher - ANOVA

We then have:(
N∑
l=1

ϕl − 1
)
σ2
jk︸ ︷︷ ︸

SST
Sum of squares total

measures — variation of the

data (SM)p
jk

(ϕl) around the

overall mean 〈(SM)jk〉

=

N∑
l=1

(ϕl − 1)σ2
jkϕl︸ ︷︷ ︸

SSE
Variability within group

mean — variation of the

data (SM)p
jk

(ϕl) around its

group mean 〈(SM)jk(ϕl)〉

+

N∑
l=1

ϕl (〈(SM)jk(ϕl)〉 − 〈(SM)jk〉)2

︸ ︷︷ ︸
SSG

Variability between group means

— variation of the group

means 〈(SM)jk(ϕl)〉 around the

overall mean 〈(SM)jk〉

To check no of independent terms:

N∑
l=1

ϕl − 1 =
N∑
l=1

(ϕl − 1) +N − 1 =
N∑
l=1

ϕl −N +N − 1
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F-test: F → Fisher - ANOVA
pj(a), Hj(s), Jj(s)

n ANOVA Tests on the (m× n) block samples

Fj=
SSG
N−1

SSE
N∑
l=1

ϕl−N

=

( N∑
l=1

ϕl−N

N−1

)
·


(

N∑
l=1

ϕl−1

)
σ2
j

N∑
l=1

(ϕl−1)σ2
jϕl

−1

 , j=1,2,...,n

pjk(a, b), Hjk(s), Jjk(s)
n(n−1)

2 ANOVA Tests on the (m× n) block samples

Fjk=
SSG
N−1

SSE
N∑
l=1

ϕl−N

=

( N∑
l=1

ϕl−N

N−1

)
·


(

N∑
l=1

ϕl−1

)
σ2
jk

N∑
l=1

(ϕl−1)σ2
jkϕl

−1

 , j=1,2,...,n−1
k=(j+1),(j+2),...,n
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F-test: F → Fisher - ANOVA
Comparison with:

pdf:

f(µ, ν; t) =
Γ(µ+ν

2 )
Γ(µ2 )Γ(ν2 ) µ

µ
2 ν

ν
2

t
µ
2−1

(µt+ ν)µ+ν
2

cdf:

g(µ, ν;Fµ ν α) =
Fµ ν α∫

0

f(µ, ν; t) dt = 1− α
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F-test: F → Fisher - ANOVA

µ = numerator degrees of freedom = (N − 1),

ν = denominator degrees of freedom =
(

N∑
l−1

ϕl −N

)
,

α = significance level

1− α =
Γ(µ+ν

2 )
Γ(µ2 )Γ(ν2 ) µ

µ
2 ν

ν
2

∫ Fµ ν α

0

t
µ
2−1

(µt+ ν)µ+ν
2

1− α =
Γ(µ+ν

2 )
Γ(µ2 )Γ(ν2 )

(
µFµ ν α
ν

)µ
2
∫ 1

0

v
µ
2−1(

1 + µ
ν vFµ ν α

)µ+ν
2

dv
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F-test: F → Fisher - ANOVA
For µ� 1, µν � 1, we can write:(

1 + µ

ν
vFµ ν α

)µ+ν
2 ≈ e

µFµ ν α
2 (1+µ

ν )v ≈ e
µFµ ν α

2 v

1− α ≈
Γ(µ+ν

2 )
Γ(µ2 )Γ(ν2 )

(
µFµ ν α
ν

)µ
2
∫ 1

0
v
µ
2−1e−

µFµ ν α
2 vdv

∫ 1

0
vA−1e−Bvdv = B−

1
2 (A+1)

A
e−

1
2B Whittaker

(
1
2(A− 1), 1

2A,B
)

1− α ≈
Γ(µ+ν

2 )
Γ(µ2 )Γ(ν2 )

(
µFµ ν α
ν

)µ
2

(
µFµ ν α

2

)− 1
2 (µ2 +1)

µ
2

e−
µFµ ν α

4

·Whittaker

(
1
2

(µ
2 − 1

)
,
µ

4 ,
µFµ ν α

2

)
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Hypothesis Testing

Null hypothesis:
H0 : 〈(SM)jk(Φ1)〉 = 〈(SM)jk(Φ2)〉 = . . . = 〈(SM)jk(ΦN )〉 ⇒
invalidation of the “Clan” concept.

Alternative hypothesis:
Ha : 〈(SM)jk(Φ1)〉 6= 〈(SM)jk(Φ2)〉 6= . . . 6= 〈(SM)jk(ΦN )〉 (not all
necessarily unequal) ⇒ existence of “Clans”.

Reject H0 if Fj > Fµ ν α ⇒ Validity of the clan concept.
If Fj < Fµ ν α we cannot say unequivocally that “Clans” do not exist.
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Some Technical Requirements for Data Validation

Assumptions for data to be used on ANOVA:

1. The (m x n) blocks from the N populations (“Clans”) are
independent.

2. The (m x n) blocks should be normally distributed.

3. The (m x n) blocks should be selected from populations with equal
variance σ2

jΦl
.

Some comments are now in order:

Assumptions 2, 3 can be more or less relaxed by trusting on the
robustness of ANOVA statistics and F-test.

We consider that assumption 3 is not violated if the “spreads”
(differences between the extremum values of entropy measures for the
(m× n) blocks on each “Clan”) are approximately the same.



26/36

F-test α = 0.01

Figure: Variation of F experimental values with column number for a fixed number of
clans = 8. F theoretical value is given by the height of the straight line (probabilities
pj(a)).
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F-test α = 0.01

Figure: Variation of F experimental values with column number for a fixed number of
clans = 23. F theoretical value is given by the height of the straight line (probabilities
pj(a)).
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F-test α = 0.01

Figure: Variation of F experimental values with column number for a fixed number of
clans = 26. F theoretical value is given by the height of the straight line (probabilities
pj(a)).
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F-test α = 0.01

Figure: Variation of F experimental values with the ordered pair of columns for a
fixed number of clans = 8. F theoretical value is given by the height of the plan
(probabilities pjk(a, b)).
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F-test α = 0.01

Figure: Variation of F experimental values with the ordered pair of columns for a
fixed number of clans = 23. F theoretical value is given by the height of the plan
(probabilities pjk(a, b)).
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F-test α = 0.01

Figure: Variation of F experimental values with the ordered pair of columns for a
fixed number of clans = 26. F theoretical value is given by the height of the plan
(probabilities pjk(a, b)).
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Table: The number of “Clans” in successive experiments and the corresponding number of
families.

no of Clans no of Families
4 290
6 325
8 372
13 412
19 471
21 490
22 500
23 509
24 557
26 584
29 605
30 639
31 658
33 688
36 712
38 726
48 884
56 953
59 980
61 1029
68 1069

We have created “Pseudo-Clans” by exchanging families between the original “Clans”.
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F-test α = 0.01

Figure: Number of F experimental values above the F theoretical value
(Fexp > Ftheor) for the cummulative number of families (probabilities pj(a)). “Clans”
are represented in blue and the “Pseudo-Clans” are represented in red.
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F-test α = 0.01

Figure: Number of F experimental values above the F theoretical value
(Fexp > Ftheor) for the cummulative number of families (probabilities pjk(a, b)).
“Clans” are represented in blue and the “Pseudo-Clans” are represented in red.
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F-test α = 0.01

Figure: Number of F experimental values above the F theoretical value
(Fexp > Ftheor) for the cummulative number of families. “Clans” are represented in
blue and the “Pseudo-Clans” are represented in red.
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Conclusions and Suggestions for Improvement

I For blocks of (100× 200) amino acids, we cannot say that these
protein families are not classified into clans. This also means that we
are not able to declare the existence of “clans”.

I The rejection of H0 increases with the number of families. However,
the rejection increases if natural clans are taken into account.

I ANOVA Statistics is not robust enough to the non-normality of data
distribution. Use of other statistics to improve the results obtained
by using Fisher’s like Levine or Forsyth, could be advisable.

I A more rigorous validation of data for the F-test. Maybe the
exclusion of “clans” with a greater spread of data.

I Considering an equal number of families on each clan.

I Greater number of families ⇒ m < 100, n < 200?


