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Basic equation
ut = D(u)Vy (N(u)Vau) + F(u)

Here x € Q2 € R" — space variables, t €
R4 — time, u = u(t, x) — phase variable

internal diffusion N(u) > Ny > 0 external
one D(u) > Dy > 0.

Constant diffusion case

D(u)=Nu) =1
Instability in bounded convex domain
[fQ=coQ CCR", D(u)=1
(Vzu,v) g0 =0, v 109

Then any stationary nonconstant solution
of the basic equation is not steady (e.g. in

norm C'(€2)).



Instability on real line

For €2 = R the instability result is true
if no one staying wave exists. E.g. it’s true
in the case




Stabilization to dominating equilibrium

Let Q = R™ I = [0,1]. F(0) > 0,
F(1) <0.

Stationary solution u(z) = U € [ (i.e.
F(U) =0) —is said to be dominatingin I,
ift J(U) > J(u) foruel, wzU. It’s
stable as (u —U)F(u) < 0 foru € O(U),
oU)clI

"Almost"global attractor for solutions with
nitials localized on 1.






Let w(x) = U — dominating equilibrium
on I, and some neighorhood O(U) C [
don’t include other equilibria. Then for
any segment [A, B]C O(U),A<U< B
there exists X > 0 such that the solution
u(x,t) with initial u(x,0) € I and u(z,0) €
(A, B] for |z| < X, stabilizes to U.



Single travelling wave
Q=R, F(0)=F(1)=0
Wave solution (travelling wave)
u(z,t) =U(§), §=x+ct, Us >0
U(—o0)=0,U(+0)=1,ce R
P(§) = N(U(&))Ug(§)

Ué ~ N](DU)
< P = <P _FU)
\ N({U)DU) D(U)
P ¢ FU)N(U)
dU ~ DU)  D(U)P

S|

1
P(
c/—U)dU:>81gnJ( ) = signc
(U)

0



Asymptotic solutions — ones, meeting the
system and one of boundary conditions.
Comparison technique for them results in
existence and uniqueness theorems.

a) Kolmogorov case

F(u) >0, u € (0,1)
Ve > C*, = [CmaCM]a
cm = 2+/N (0) D (0) Fy, (0),

/ dv
enr = 2\ o | ) / e
Uy

b) Trigger case
F(e)<0, F(1—¢)>0,e>0
(2)& (i) = e >0

8




i)Vu € (0,1), J(u) < J(1),
i)u € (0,1)&F(u) =0= J(u) <0
P.S. 1) In (i) it’s enought to check zeros
u with:
F(u—¢)>0,Ve e (0,e0),e0 >0
2) If J(1) < 0 the change
C=—c, i=—x 4=1—u, F= —F(1—u),

D(4) = D(1—4), N(@) = N(1 — ),



Trigger wave chains
Zero u is stable (with respect to ODE

AW — F(u)) iff
+F(ute) <0, Ve € (0,e5),60 >0
Let 0 = up < up < ... < up =1

isolated zeros, u;, © > 1 — stable
1<, ¢ij €R:
U(—o00) = u;, U(+00) = u;
[ffor 0 <g<m<I<kdcgn <cyy
Then dey; € (cqm, le)-

Minimal chains
For any tull set of zeros

{u}, up <wug < ... <wup

g < {1, R 7k} . 3! {Cijij+1 > C’ij+1’ij+2}

10



Kolmogorov wave chains
ug —unstable ey € I, 7 > 2 where by

induction I; = [¢}, ¢/), with &/ — minimal

velocity in trigger chain for {up}. p =

l,...,7, and CJKEIJ/, 7' <.
Stabilization to wave chains

F(0) = F(1) =0,
uz(x,0) > 0= uy(x,t) >0
for Q(u,t) = uy(u,t)
Qi=Q*(D(@N), +§) =
= Q*(D(QN)u)u + FuQ — FQu

+9£0 — 4 Flay) >0
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Q(u,0) >0, u € [0, 1]
& #0, u e (a-(0), ay(0))
Sub- ¢ supersolutions
(@t =) —
(@t <)— regular subsolution (RDS)
{ (Q¢ >)- regular supersolution (RUS)

Maximum of RDS is a subsolution (DS).
Minimum of RUS is a supersolution (US).
1) solution is both RDS and RUS
2) US> DSifatt =0
3) If Q+(u) > 0 — stationary US (SUS)

and not a solution and Q(u, t) with Q(u,0) =
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Q+( ) — solution such that on boundaries
2Q(0,1) <0, £Q(1,1) 0,

then %Q(u,t}_ <0, #0if Q(u,t) # 0.
So, Q(u,t) for t > 0 is SUS.

4) It Q-(u) < Qu,?) < Q4(u) at
some ¢ > 0, and 3!Q(u) — SS, such that
Q—(u) < Qu) < Q+(u),

then Q(u,t) — Q(u), t — oo.
Convergence on phase plane results in
convergence to shifted wave with proper

velocity:.
Supersolutions in single wave case

[n case F(0) = F(1) =0 let
M > sup max{Q(u, 0), Qi(u)},

with @;(u) — all possible travelling wave
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solutions on (0, 1),

0
A? > sup{ <F(Z;(]Z)( )> }

Qu) = A]%EZ% —SUS, so that the solution
Qs(u, t) with Qar(u,0) = Q(u) and
Qr(0,1) = Qp(1,t) =0,

for ¢ > 0, is nonincreasing
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Subsolutions in single wave case

1) Basic DS.

On connected sets I+ C (0,1), where
+F(u) > 0.

a) we I

Q—(u) =max{0,eF(u)(w—u)}, e > 0.

b) w € ]_|_.

Q) —(u) = max{0, ®(u)} with rather small
asymptotic solution ®(u), leaving unstable
7€10.

Bridges over unstable zero u

U@ T W)
Q—( » )_ N(U)

Bridges over stable zero u
u € (0,1) — single inner stable zero.

F'(u) < 0.
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1) ¢ > ¢ — combinatorics of single
waves and zeros.

2) Let ¢ < ¢9, with the first wave entering
an equilibrium u, and the second one leaving
it. Then Q(w,0) > 0 results in Q(u,t) >
e > 0, so under € one can construct the
bridge — wave solution with velocity ¢ €

(c1,¢2)
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Super- and subsolutions in Kolmogorov
case Fy,(0) > 0
from characteristic equation

¢ = &(q) = qD(O)N(0) + F“;”,

with ¢(c) = min{qg > 0: ¢(q) = ¢}
Function ¢ = ¢(q) > 0 has minimum ¢y,

. £, (0
“QZVw@MW

1) In the case with minimal velocity ¢*
one can get ®(u) = max P (u) with ¢ (u) <
Q(u, 0) —trajectories, leaving unstable zero
with ¢ — ¢* + 0.

2) Real wave velocity ¢ is defined by
initial asymptotic at u = 0.

E.g if d¢ = dQCgUO lu=0 € 10,q™], for
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q* < q such that ¢* = ¢(¢*) > ¢, then
c = ¢(q) > ¢*. Otherwise (¢ > ¢*) one

DS are constructed as above. US for proper
value of g is constructed at later time moment.

The case of minimal velocity

Theorem Let nonnegative continuous function
Q(u, 0) is positive over (0, 3), with F' (3) >
Oor 8 € {u;}, ¢=1,...,k Thenunder
the inequality

T A CL1U B

u—+0 U
the true solution Q(u, t) converges on phase
plain for t — +o00 to Kolmogorov’s minimal
true chain on interval (0, u4 ), where uy =
minu; > 3, ¢ = 1,...,k, with minimal
first wave velocity ¢/M.
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Conclusion. In the case of strictly increasing
over x initial u(x,0), vanishing at some
finite  with ug(2,0) > 0, or else with
ug(x,0) > 0 and ugz(z,0) > —d at x €
(z, T +¢) for some €,6 > 0, the first wave
velocity would be minimal, i.e. equal ¢/M.

The case of non-minimal velocity

For ¢ > ¢* let Cc(u) be the wave with
velocity c.

Theorem. Let Q(u,0) = u(q + g(u))
with ¢ € (0,q(c*)) and continuous over
0, 1] function g(u) = o(1), for which the

1
. g(u)
integral +f0 = —~du converges.

Then the true solution Q(u, t) converges
to the wave Cy ) (u) for ¢ — +o0 in the
following sence.
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There exist functions Q4 (u, t) such that
)< Q (wt) < Qunt) < Qilut)
whereas Q—(u,t) < Cpyg)(u) converges
to Cy(q)(u) uniformly on compacts I C
(0,1), and for Q4 (u,t) > Cy(y)(u) in the

metric p(Q1, Q) =
/+OO /1 F(u) 11
t 0 D(u) Ql(ua 7-) QQ(ua 7-)

ol (@ (1), g () — 0

convergence takes plase.

dudTt
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The leader selection 1n a diffusion

model of compeating species.
r e R, i =1,....N, u(z,t) > 0.

. . . N .
D' >0, F'(u) = u MZ—Z%]'U])
7=1

uw=(ul,... ,uN) — population dencities,
M = (MY, ..., MY) > 0 maltusian
parameters, I' = H%]H — competition matrix,
Vi > 0.

Reaction-diffusion system:
. . . . . N .
uy = D'l +u' | M — Z%juj
J=1

u'(x,0) > 0, The support
S = suppul(z,0) = cl{z : u'(x,0) > 0} £ 0.
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N
= O (U SZ> — seat is bounded.
1=1

(Hl) The common ecological niche hypothesis:
= a;3;,& mt = MZ are dlﬁerent

ForN—lc—Q\/ ML ol = 7
The spesies i1 € {1, .. N} is a leader
VX >0dz > X: Htj>0.
1) uzl(i‘,tj> > o'
2) uk(:z:,tj) < 6F Yk # 4y and z > &
(H2) Solution of the problem i1 € {1,..., N}

v/ Dit Mi1 = max {\/ DZ’M@'} |
1
1S unique.

Theorem (H1), (H2) = The leader exists

and 1ts number does not depend on initial
finite distributions

)
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Example: Diffusion model of
genetic waves

Hypothesises

1. The Population is distributed in space
with one variable x € R.

2. Phenotypic particularities differ due
to one two-allelic gene with alleles A and
a.

3. Total number of A and a alleles of
fertile individuals is constant

p(t,x)+q(t,x) =1.
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4. Changes of alleles A and a number
occurs through their carriers with genotypes
AA, Aa, and aa having fitness (the alive
factors to maturation age, i.e. from conception
to fertile stage) a, 3, . The departure rate
from fertile stage (death-rate + aging) is
constant.

5. Locally over x the hypothesis about
full panmixia is fulfilled.

6. Crossbreeding is realized via the gametes
spatial carrying, and not depends on genotype.
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Integral model
The long-range genetic action operator
at maturation time h =1

+00

Kp)wt) = [ hoOplé i
g

k(2.6) = - 27;2, K(1)=1

3)If ¢ = K(p), v =K(q =1-—¢,
UA = PP, UAq = PV +qp, ug = q, that

{ pt = 2au + Pug, — pr,
Gt = Bupg +27ua — qr,
where r :p+q=1s0r =r(p+q) =
20qu g + Bug, + Yug).
pt = ¢R(p) + [Bplq — p) — 2p7].
R(p) = 2pq(a+7) + Blg — p)* > 0
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PDE aproximation
Decomposition

p(f,t) — p(m‘,t) +

19°p(z, t)
5 2552 (E—a)+...

gives for small o > 0

o2 82p(x, t)

K(p)(z,t) = pla,t) + T2

and equation
pt = D(p)pzz + F(p),
sl D(y) = R0

F(p) = pR(p) + [Bp(q — p) — 2pg7y] =
2pqlap — vq + Blq — p)].

+ ...,

26



Main results
Three equilibria:

=B
—0, pi=1p*= |
Po p1 V=
f du sign J = sign (l—p*)
5—04_57 oz>*y

Intervals for (:

(_0077)7 (775)7 (57 le), (&7+OO)

R(p) concave § > (3, convex ¢ < [3.

1. B <7.

F'(0) =2(8—7) <0, F'(1)=2(8-

@) <0,p" € (0,3), >0

The Wave solution = genetic wave of
spreading of more strong allele A.
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2.y < B <o.

F'(0) >0, F'(1) <0, and p* < 0 so
F(p) > Ounder p € (0,1). Wave solutions
with velocity ¢ > ¢ > ¢y, where ¢® -
minimum, but

ek =2y D(0)F'(0) = 20/ B(5 — )
— Kolmogorov’s velocity:.

3.0 < B <a.

F'(0) >0, F'(1) <0, and p* > 1,
once again F'(p) > 0 under p € (0,1).

Since function D(p) is convex (maximum
on the end of the interval (0,1)), but

F'ip) > 0= F"(p) <0
 that C* = Ok
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4. 3 > a.
F'(0) > 0, F'(1) > 0. Chain of two
waves, scatterring from p* € (%, 1). The

velocities value spread from

¢k = 2¢/D(0)F"(0) = 20+/B(3 —7)
and

ek =2/ D) F(1) = 20\/B(8 — o)

to 4+00. Minimal value of the velocity follows
from implication
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