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Basic equation

ut = D(u)∇x (N (u)∇xu) + F (u)

Here x ∈ Ω ⊂ Rn – space variables, t ∈
R+ – time, u = u(t, x) – phase variable
internal diffusionN (u) > N0 > 0 external

one D(u) > D0 > 0.
Constant diffusion case

D(u) ≡ N (u) ≡ 1

Instability in bounded convex domain
If Ω = co Ω ⊂⊂ Rn, D(u) ≡ 1

(∇xu, ν) |∂Ω = 0, ν⊥∂Ω

Then any stationary nonconstant solution
of the basic equation is not steady (e.g. in
norm C(Ω)).
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Instability on real line
For Ω = R the instability result is true

if no one staying wave exists. E.g. it’s true
in the case

(u1 < u2) & (F (u1) = F (u2) = 0) ⇒
(J(u1) �= J(u2)) .

Here and later

J(U) =

∫ U

0

F (u)N (u)

D(u)
du
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Stabilization to dominating equilibrium
Let Ω = Rn, I = [0, 1]. F (0) ≥ 0,
F (1) ≤ 0.
Stationary solution ũ(x) ≡ U ∈ I ,(i.e.
F (U) = 0) – is said to be dominating in I ,
iff J(U) > J(u) for u ∈ I, u �= U . It’s
stable as (u−U)F (u) < 0 for u ∈ O(U),
O(U) ⊂ I
"Almost"global attractor for solutions with

initials localized on I .
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Let ũ(x) ≡ U – dominating equilibrium
on I , and some neigborhood O(U) ⊂ I
don’t include other equilibria. Then for
any segment [A,B] ⊂O(U), A < U < B
there exists X > 0 such that the solution
u(x, t) with initial u(x, 0) ∈ I and u(x, 0) ∈
[A,B] for |x| < X , stabilizes to U .
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Single travelling wave

Ω = R, F (0) = F (1) = 0

Wave solution (travelling wave)

u(x, t) = U(ξ), ξ = x + ct, Uξ > 0

U(−∞) = 0, U(+∞) = 1, c ∈ R

P (ξ) = N (U(ξ))Uξ(ξ)⎧⎨
⎩
Uξ = P

N(U )

Pξ = cP
N(U )D(U )

− F (U )
D(U )

.

dP

dU
=

c

D(U)
− F (U)N (U)

D(U)P

J(1) = c

1∫
0

P (U)

D(U)
dU ⇒ sign J(1) = sign c
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Asymptotic solutions – ones, meeting the
system and one of boundary conditions.
Comparison technique for them results in
existence and uniqueness theorems.
a) Kolmogorov case

F (u) > 0, u ∈ (0, 1)

∀c ≥ c∗, c∗ ∈ [cm, cM ],

cm = 2
√
N (0)D (0)Fu (0),

cM = 2

√√√√√√ sup
u∈(U1,U2)

⎛
⎜⎝N (u)F (u)/

u∫
U1

dv

D(v)

⎞
⎟⎠

b) Trigger case
F (ε) < 0, F (1 − ε) > 0, ε > 0

(i)&(ii) ⇒ ∃! c ≥ 0
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i)∀u ∈ (0, 1), J(u) < J(1),

ii)ū ∈ (0, 1)&F (ū) = 0 ⇒ J(ū) < 0

P.S. 1) In (ii) it’s enought to check zeros
ū with:

F (ū− ε) > 0, ∀ε ∈ (0, εo), εo > 0

2) If J(1) < 0 the change

ĉ = −c, x̂ = −x, û = 1−u, F̂ = −F (1−û),

D̂(û) = D(1 − û), N̂(û) = N (1 − û),
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Trigger wave chains
Zero ū is stable (with respect to ODE

du
dt = F (u)) iff

±F (ū± ε) ≤ 0, ∀ε ∈ (0, εo), εo > 0

Let 0 = u0 < u1 < . . . < uk = 1 –
isolated zeros, ui, i ≥ 1 – stable

i < j, cij ∈ R :

U(−∞) = ui, U(+∞) = uj
If for 0 ≤ q < m < l ≤ k ∃ cqm < cml.

Then ∃cql ∈
(
cqm, cml

)
.

Minimal chains
For any full set of zeros

{ui}, u1 < u2 < . . . < uk

ij ∈ {1, . . . , k} : ∃! {cijij+1
≥ cij+1ij+2}
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Kolmogorov wave chains
u0 – unstable ∃c0j ∈ Ij, j ≥ 2 where by

induction Ij = [c
j
K, ĉ

j), with ĉj – minimal
velocity in trigger chain for {up}. p =

1, . . . , j, and cjK ∈ Ij′, j
′ < j.

Stabilization to wave chains

F (0) = F (1) = 0,

ux(x, 0) ≥ 0 ⇒ ux(x, t) > 0

for Q(u, t) = ux(u, t)

Qt = Q2
(
D (QN )u + F

Q

)
u

=

= Q2(D(QN )u)u + FuQ− FQu

±α±(t)
dt = ±F (α±) ≥ 0
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∃!Q(u, t), Q(±α±(t), t) = 0

α±(t)∓ε∫
α±(t)

du

Q(u, t)
= ∞, t > 0

Q(u, 0) ≥ 0, u ∈ [0, 1]
& �= 0, u ∈ (α−(0), α+(0))

Sub- & supersolutions
(Qt =) →{
(Qt ≤)– regular subsolution (RDS)
(Qt ≥)– regular supersolution (RUS)

Maximum of RDS is a subsolution (DS).
Minimum of RUS is a supersolution (US).
1) solution is both RDS and RUS
2) US ≥ DS if at t = 0
3) If Q+(u) ≥ 0 – stationary US (SUS)

and not a solution andQ(u, t) withQ(u, 0) =
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Q+(u) – solution such that on boundaries
d
dtQ(0, t) ≤ 0, ddtQ(1, t) ≤ 0,
then ∂

∂tQ(u, t) ≤ 0, �= 0 if Q(u, t) �= 0.
So, Q(u, t̄) for t̄ > 0 is SUS.
4) If Q−(u) ≤ Q(u, t̄) ≤ Q+(u) at

some t̄ ≥ 0, and ∃!Q̄(u) – SS, such that

Q−(u) ≤ Q̄(u) ≤ Q+(u),

then Q(u, t) → Q̄(u), t→ ∞.
Convergence on phase plane results in

convergence to shifted wave with proper
velocity.
Supersolutions in single wave case
In case F (0) = F (1) = 0 let

M > sup
u

max{Q(u, 0), Qi(u)},
with Qi(u) – all possible travelling wave
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solutions on (0, 1),

Q̂(u) = M +

u∫
0

1 − v

D(v)
dv,

A2 ≥ sup
u

{∣∣∣∣∣
(
F (u)N (u)

Q̂(u)

)
u

∣∣∣∣∣
}

Q̄(u) = A
Q̂(u)
N(u)

– SUS, so that the solution
QM (u, t) with QM (u, 0) = Q̄(u) and

QM (0, t) = QM (1, t) = 0,

for t > 0, is nonincreasing
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Subsolutions in single wave case
1) Basic DS.
On connected sets I± ⊂ (0, 1), where

±F (u) > 0.
a) ω ∈ I−.
Q−(u) = max{0, εF (u)(ω−u)}, ε > 0.
b) ω ∈ I+.
Q−(u) = max{0,Φ(u)} with rather small

asymptotic solution Φ(u), leaving unstable
zero.
Bridges over unstable zero û

Q−(u, û, ε) =

√
2 (J(û) + ε− J(u))

N (u)

Bridges over stable zero û
û ∈ (0, 1) – single inner stable zero.
F ′(ū) < 0.
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1) c1 ≥ c2 – combinatorics of single
waves and zeros.
2) Let c1 < c2, with the first wave entering

an equilibrium û, and the second one leaving
it. Then Q(û, 0) > 0 results in Q(û, t) >
ε > 0, so under ε one can construct the
bridge – wave solution with velocity c ∈
(c1, c2)
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Super- and subsolutions in Kolmogorov
case Fu(0) > 0
from characteristic equation

c = c̃(q) = qD(0)N (0) +
Fu(0)

q
,

with q̃(c) = min{q > 0 : c̃(q) = c}
Function c = c̃(q) > 0 has minimum cm

at q̂ =

√
Fu(0)

(D(0)N(0))

1) In the case with minimal velocity c∗
one can get Φ(u) = max Φλ(u) with Φλ(u) ≤
Q(u, 0) – trajectories, leaving unstable zero
with c→ c∗ + 0.
2) Real wave velocity c is defined by

initial asymptotic at u = 0.
E.g. if ∃q =

dQ(u,0)
du |u=0 ∈ [0, q∗], for
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q∗ ≤ q̂ such that c∗ = c̃(q∗) ≥ cm then
c = c̃(q) ≥ c∗. Otherwise (q > q∗) one
has c = c∗.
DS are constructed as above. US for proper

value of q is constructed at later time moment.
The case of minimal velocity
Theorem Let nonnegative continuous function
Q(u, 0) is positive over (0, β), with F (β) >
0 or β ∈ {ui}, i = 1, . . . , k. Then under
the inequality

lim inf
u→+0

Q(u, 0)

u
≥ q̃(c∗)

the true solutionQ(u, t) converges on phase
plain for t→ +∞ to Kolmogorov’s minimal
true chain on interval (0, u+), where u+ =
minui ≥ β, i = 1, . . . , k, with minimal
first wave velocity cjM .
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Conclusion. In the case of strictly increasing
over x initial u(x, 0), vanishing at some
finite x̄ with ux(x̄, 0) > 0, or else with
ux(x, 0) > 0 and uxx(x, 0) ≥ −δ at x ∈
(x̄, x̄+ε) for some ε, δ > 0, the first wave
velocity would be minimal, i.e. equal cjM .
The case of non-minimal velocity
For c > c∗ let Cc(u) be the wave with

velocity c.
Theorem. Let Q̃(u, 0) = u(q + g(u))

with q ∈ (0, q̃(c∗)) and continuous over
[0, 1] function g(u) = o(1), for which the

integral
1∫

+0

g(u)
u du converges.

Then the true solution Q̃(u, t) converges
to the wave Cc̃(q)(u) for t → +∞ in the
following sence.
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There exist functionsQ±(u, t) such that
0 ≤ Q−(u, t) ≤ Q(u, t) ≤ Q+(u, t),
whereas Q−(u, t) ≤ Cc̃(q)(u) converges
to Cc̃(q)(u) uniformly on compacts I ⊂
(0, 1), and for Q+(u, t) ≥ Cc̃(q)(u) in the
metric ρt(Q1, Q2) =∫ +∞

t

∫ 1

0

F (u)

D(u)

∣∣∣∣ 1

Q1(u, τ )
− 1

Q2(u, τ )

∣∣∣∣ dudτ
ρt
(
Q+(u, t), Cc̃(q)(u)

)
→ 0

convergence takes plase.
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The leader selection in a diffusion
model of compeating species.
x ∈ R, i = 1, . . . , N , ui(x, t) ≥ 0.

Di > 0, Fi(u) = ui

(
Mi −

N∑
j=1

γiju
j

)
,

u = (u1, . . . , uN ) – population dencities,
M = (M1, . . . ,MN ) > 0 – maltusian
parameters, Γ =

∥∥γij∥∥ – competition matrix,
γii > 0.
Reaction-diffusion system:

uit = Diuixx + ui

⎛
⎝Mi −

N∑
j=1

γiju
j

⎞
⎠

ui(x, 0) ≥ 0, The support

Si = suppui(x, 0) = cl{x : ui(x, 0) > 0} �= ∅.
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S = co

(
N⋃
i=1

Si

)
– seat is bounded.

(H1) The common ecological niche hypothesis:
γij = αiβj,& mi = Mi

αi
are different.

For N = 1 c1 = 2
√
D1M1, û1 = M1

γ11
.

The spesies i1 ∈ {1, . . . , N} is a leader,
∀X > 0 ∃x̂ > X : ∃tj > 0:
1) ui1(x̂, tj) > δi;
2) uk(x, tj) < δk ∀k �= i1 and x ≥ x̂.
(H2) Solution of the problem i1 ∈ {1, . . . , N},√

Di1Mi1 = max
i

{√
DiMi

}
.

is unique.
Theorem (H1), (H2) ⇒ The leader exists

and its number does not depend on initial
finite distributions
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Example: Diffusion model of
genetic waves

Hypothesises
1. The Population is distributed in space

with one variable x ∈ R.
2. Phenotypic particularities differ due

to one two-allelic gene with alleles A and
a.
3. Total number of A and a alleles of

fertile individuals is constant
p(t, x) + q(t, x) = 1.
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4. Changes of alleles A and a number
occurs through their carriers with genotypes
AA, Aa, and aa having fitness (the alive
factors to maturation age, i.e. from conception
to fertile stage) α, β, γ. The departure rate
from fertile stage (death-rate + aging) is
constant.
5. Locally over x the hypothesis about

full panmixia is fulfilled.
6. Crossbreeding is realized via the gametes

spatial carrying, and not depends on genotype.
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Integral model
The long-range genetic action operator

at maturation time h = 1

K(p)(x, t) =

∫ +∞

−∞
k(x.ξ)p(ξ, t)dξ

k(x.ξ) =
e
−(x−ξ)2

2σ2

√
2πσ2

, K(1) = 1

(3) If ϕ = K(p), ψ = K(q) = 1 − ϕ,
uA = pϕ, uAa = pψ+ qϕ, ua = qψ, that{

pt = 2αuA + βuAa − pr,
qt = βuAa + 2γua − qr,

where r : p + q = 1 so r = r(p + q) =
2(αuA + βuAa + γua).

pt = ϕR(p) + [βp(q − p) − 2pqγ],

R(p) = 2pq(α + γ) + β(q − p)2 > 0

25



PDE aproximation
Decomposition

p(ξ, t) = p(x, t) +
∂p(x, t)

∂x
(ξ − x)+

1

2

∂2p(x, t)

∂x2
(ξ − x)2 + . . .

gives for small σ > 0

K(p)(x, t) = p(x, t) +
σ2

2

∂2p(x, t)

∂x2
+ . . . ,

and equation

pt = D(p)pxx + F (p),

where D(p) = σ2

2 R(p),

F (p) = pR(p) + [βp(q − p) − 2pqγ] =
2pq[αp− γq + β(q − p)].
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Main results
Three equilibria:

p0 = 0, p1 = 1, p∗ =
γ − β

α + γ − 2β
.

J =
∫ 1
0
F (u)
D(u)

du, signJ = sign
(

1
2 − p∗

)
δ = α+γ

2 . α > γ
Intervals for β:

(−∞, γ), (γ, δ), (δ, α), (α,+∞)

R(p) concave δ > β, convex δ < β.
1. β < γ.
F ′(0) = 2(β− γ) < 0, F ′(1) = 2(β−
α) < 0, p∗ ∈

(
0, 1

2

)
, J > 0

The Wave solution = genetic wave of
spreading of more strong allele A.
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2. γ < β < δ.
F ′(0) > 0, F ′(1) < 0, and p∗ < 0 so
F (p) > 0 under p ∈ (0, 1). Wave solutions
with velocity c ≥ c∗ ≥ cK , where c∗ –
minimum, but

cK = 2
√
D(0)F ′(0) = 2σ

√
β(β − γ)

– Kolmogorov’s velocity.
3. δ < β < α.
F ′(0) > 0, F ′(1) < 0, and p∗ > 1,

once again F (p) > 0 under p ∈ (0, 1).
Since functionD(p) is convex (maximum

on the end of the interval (0, 1)), but

F ′(p) > 0 ⇒ F ′′(p) < 0

, that C∗ = CK
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4. β > α.
F ′(0) > 0, F ′(1) > 0. Chain of two

waves, scatterring from p∗ ∈
(

1
2, 1
)
. The

velocities value spread from

c0K = 2
√
D(0)F ′(0) = 2σ

√
β(β − γ)

and

c1K = 2
√
D(1)F ′(1) = 2σ

√
β(β − α)

to +∞. Minimal value of the velocity follows
from implication
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