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Objectives of the work

e Develop and solve the inverse problem for the model of
population dynamics of the HIV infection;

e Develop and estimate parameters for the model of labelled
cells division;

e Compare the numerical optimization methods for the
formulated problems solution.



Model developement and parameter estimation

The mathematical description of
the immune processes across
different scales calls for the
development of multi-scale models
characterized by a high
dimensionality of the state space
and a large number of parameters

For complex models, only a small
subset of the model parameters can
be derived or measured from the
available experimental data. Most
of the remaining parameters have to
be estimated by solving the inverse
problem.

For high-dimensional models the
parameter estimation problem is
usually computationally demanding.

Step 1. Derive based

on knowledge and assumptions

Step 2. Solve equations
numerically using initial guesses
for parameters

Step 3. Obtain values of some
parameters from literature

|

Step 4. Use data to estimate
remaining model parameters

|

Step 1. Test model fit and
predictive ability
[
Step 6a. Design and conduct

Are model more experiments
predictions. NO
satisfactory?
Step 6b. Revise model structure
YES 7 based on new knowledge

Step 7. Use the model




Parameter estimation problem

® Mathematical model:

dzi(tt) = F(y(t),p),t € [0, T] — model equations;
y(t) = {y,-(t), i=1,..,n,yf(t) € c(o, T)} — time dependent variables; @
y(0) =ygp — initial conditions;
p ={pi},i=1,..,m — parameter vector.
® p = [a,b], where [a] is a vector of estimated components; {x;, t;},j =1, ..., K - experimental
data. The parameter estimation problem can be formulated as:
pr=arg _min _(y,x,p) @)

PEQCR™

® A general statistical framework for parameter estimation is the Bayesian approach which under
the assumption of a uniform prior distribution of the model parameters reduces to a maximum
likelihood estimation (MLE). Assuming that the observational errors are normally distributed,
time- and component-independent and the variance of observation errors is the same for all the
state variables and observation times, the MLE reduces to the minimization problem for the
least-squares function
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Numerical optimization methods

Optimization

/ methods \
e

Local optimization

Direct:
Hooke-Jeaves method;
Nelder-Mead method;

Gradient based:
Gauss-Newton method;
Levenberg-Marquard
method;

—>

Global optimization Hybrid optimization

Explicit:
branch-and-bound method,;
DIRECT;

Metaheuristic:
simulated annealing;
evolutionary algorithms;
genetic algorithms;

Purely stochastic:
Monte-Carlo;
Multistart;



HIV epidemiology

THE WORLDWIDE SCOURGE OF HIV/AIDS
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Mathematical model of HIV infection
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® Most of the models only
account for the acute phase
and asymptomatic latency
phase and cannot explain the
progression to AIDS.

® There are different hypothesis
for AIDS: population dynamics,
virus evolution, et. al.



Mathematical model of HIV infection
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® Marchuk-Petrov model of antiviral
immune response was taken as a base;

® Model describes cellular and humoral
immune reactions;

[ ]

The infection of target cells by HIV, i.
e. the T helper lymphocytes (CD4
Thl and CD4 Th2) and the antigen
presenting cells (APC);

The free virus- and the APC mediated
modes of infection of CD4 T cells;

The negative feedback of the infection
and target cell destruction on the
homeostasis of the lymphocytes is
considered.

Model contains 18 variables and 51
parameters, 32 parameters are
estimated;

Parameters were estimated for two
datasets, characterizing different
scenarios of infection dynamics;



Table: Model variables

Name Variable Initial value
D number of antigen presenting cells (APC), cell/ml 5.10°
Dy number of activated APC , cell/ml 0
Hg number of CD4 Thi, cell/ml 4.5 .10%
Hg number of CD4 Th2, cell/ml 4.5.10°
B number of B-lymphocytes, cell/ml 2.7-10°
P number of plasma cells, cell/ml 10
F number of antibodies, particle/ml 0
E number of cytotoxic T-lymph., cell/ml 4.5.10°
D"; number of inf. activated APC, cell/ml 0
Hé number of inf. CD4 Thi, cell/ml 0
Hg number of inf. CD4 Th2, cell/ml 0
v number of vir. particles, particle/ml 100
m number of dead target cells(as infection result), cell/ml 0
HEsp number of HIV specific CD4 Th1, cell/ml 5
Hpsp number of HIV specific CD4 Th2, cell/ml 5
Bsp number of HIV specific B-cells, cell/ml 3
Esp number of HIV specific cytotoxic T-cells, cell/ml 5
HEsp number of infected HIV specific CD4 Thil, cell/ml 0
H number of infected HIV specific CD4 Th2, cell/ml 0

Bsp




Equations for uninfected unspecific cells and antibodies are written as follows:

dp o
r =ap((D” — D) — opVD — ~vpy VD;
t

dDy
el YpovVD — ap, Dy — opVDy;
dHg 0 D *
Tl ang(§Hg — He) — ongHV — oy HeDy;
dHg D *
- apg (EHE — Hg) — opg HEV — ohg HeDY:
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dt

Equations for infected unspecific cells are written as follows:

doy

Tt" = opV(D + Dy) — bp,, Dy Esp — bD‘*/D\*/;

dHj

TtB = OHgHBV + o HgDYy — brgeHE Esp — by M
dH

T:E = ongHEV + of_HEDY — bppeHE Esy — by HE:



Dynamics of viral particles and total number of dead cells are described by the following equations:

av o " * - - o
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Equations for uninfected HIV-specific cells are written as follows:
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Equations for infected HIV-specific cells are written as follows:

dH}

dep = O-HBHBSPV + O-EBHBSPD\*/ + 2bHB(DV + D*\;)Hgspi
bf,B(DV + DT/)HESPBsp - bHBEHEspESP B bHE HESP;
dtsp = UHEHEspV + JEEHESPD*V + 2bHE(DV + DV)HEsp_

bII-DIE(DV + DT/)HEspESP - bHEEHEspESP - bHE stp;

Negative feedback is described as follows:

(L-em)
em+ HX + HS + DO’
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Minimized functional

17
®(p) = > _ [log(CD4; ops) — log(CDA(t))]*+
j=1
17
Z [log(CD8; ops) — log(CD8(t;))]>+
i=1

17
Z [log(V;) — log(V(T;)))?



HIV model solution

HIV dynamics model, data set 1:
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Mathematical model of labelled cells division

e Model describes the kinetics of proliferation of BrdU-labelled
cells for SIV-infected primates;

e The main goal of the model is to check the hypothesis about
chronic immune activation during the infection.

e The model version, describing also the dynamics of Ki67 was
considered.



Mathematical model of labelled cells division

p

[

e Experimental data is given for
control and infected groups of
animals; synthetic data is also

A*f d\A considered;

® Parameters are evaluated for

P2 d,

i M+ control and infected group
——1 MWWo1 : :
dy* simultaneously;
™
1 M+1
d;

Zvi Grossman, Gennady Bocharov, 2006



Mathematical model. Parameters

Table: Model parameters

Name | Biological meaning Units Range
Mo transition rate from A to Mg, ml/day | 0.001 - 2
Ko transition rate from A to Mg, ml/day | 0.001 - 2
Hy transition rate from A to I\/Ii*' ml/day | 0.001 - 2
ua transition rate from A to M, ml/day | 0.001 - 2
dy death rate Mg, ml/day
dy death rate M, ml/day
dr death rate Mf' ml/day
do death rate M3 ml/day
ds death rate M, ml/day
02 transition rate from M; to M3 | ml/day | 0.001 -1
03 transition rate from M2+ to My | ml/day | 0.001-1

P tuning parameter 0.3-3.0

f tuning parameter 0.01-1
ml/day

P basic proliferation rate for A ml/day | 0.1-2.0

A0 max maximal number for A ml/day 1
LT label injection interval delay ml/day 1.5




Ao max(1 — exp[—2p LT]) exp(—2p(t — LT — A)), LT+ A < t.

Model equations

Ao max(1 — exp[—2pt]), 0 < t < LT;
Aomax(1 — exp[=2p LT]), LT < t < LT + A;
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Minimized functional
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BRDU-labeled cell division model solution

Cell-division model, control group:

lodel solution odel solution
Experimental data Experimental data

CCRS+ (fraction)
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Cell-division model, infected group:

odel solution
Experimental data
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Time, days

Progressive CD4+ central memory T cell decline results in CD4+ effector memory insufficiency and
overt disease in chronic SIV infection. Okoye A1, Meier-Schellersheim M, et. al.
Picker, Grossman (unpublished data)



Numerical methods used in numerical experiments

TT — TT global optimization method.

CRS2 - Controlled Random Search with local mutation. The idea of the
algorithm is similar to the idea of genetic algorithms, which start
with a random "population" of points, and randomly change these
points according to some heuristic rules.

rMLSL — Multi-Level Single-Linkage with pseudo-random start points.
MLSL is a subtype of multistart algorithm, which implements a
sequence of local optimizations from random start points. The
algorithm uses a clustering heuristic to avoid the re-introducing the
previously founded local optima.

qrMLSL — Multi-Level Single-Linkage with quasi-random start points.
rMLSL+SBPLX — Multi-Level Single-Linkage with pseudo-random start points,
Sublex method used for local optimizations.
qrMLSL+SBPLX — Multi-Level Single-Linkage with quasi-random start points, Sublex
method used for local optimizations.

ISRES - Improved Stochastic Ranking Evolution Strategy. The algorithm
combines a mutation rule, realized with a log-normal step-size
update and exponential smoothing, and differential variation, based
on a Nelder-Mead-like update rule.

ESCH - Evolutionary Algorithm. This is a modification of Evolutionary
Algorithm, developed by Carlos Henrique da Silva Santos's.



TT global optimization method

e Method was introduced in INM RAS (Zheltkov, Tyrtyshnikov,
et. al.)

e Method is based on the useful properties of the
TT-decomposition and TT-cross interpolation method.

e Sequental and parallel versions of the method were
implemented.



TT global optimization: algorithm

Algorithm 0.1: TT opTimizATION(A € R™MX--XMd rp. max_it)

for k<~ 1tod
do P, < random
for it < 1 to max_it
[lk, Jk] + construct _submatrix(ny, nis1, Pk)
[U, V, P] < matrix__cross(Ax(lk, Jk))
do < Py < Py | optimized(Py)
P« P U...UPy
Pk — Pk_]_ U Pk U Pk+1 U best(P, rmax)
return (best(P,1))

® Complexity: O(dnr?,,) functional evaluations, O(drmax) local optimizations and
O(dnr3,,) arithmetic operations.

® For parallel version parallel complexity: O(rmax) functional evaluations, O(1)
local optimizations and O(d + r2,,) arithmetic operations



Numerical results

Locally optimized minimal values of the LSQ functional, obtained by global
optimization methods.Results are given for HIV model (M. 1) for two datasets (data 1
and data 2), and for labelled cell division model (M. 2) for experimental data (data 1)
and synthetic (data 2):

Method M. 1, data 1 M. 1, data 2 M. 2 data 1 M. 2, data 2
TT 2.28 0.146 427 0.0055
CRS2 2.47 0.155 1164 49
rMLSL 2.50 0.186 759 2.4
qrMLSL 2.51 0.184 1062 67.2
rMLSL+SBPLX 2.13 0.144 428 0.04
qrMLSL+SBPLX 2.22 0.148 429 0.008
ISRES 2.34 0.156 526 1
ESCH 3.49 0.166 555 3.3

All methods were set to perform 10 functional evaluations for the first model and 102
for the second model.



Conclusions

We formulated a mathematical model of HIV infection by
extending the Marchuk-Petrov model of an antiviral immune
response. The model considered a detailed description of the
infection and immune response processes operative in HIV
infection.

We considered a model of BrdU-labelled cell division for
healthy and SIV-infected primates.

A number of existing optimization methods were explored to
treat the parameter estimation problem for proposed models;

The TT-based and MLSL hybrid optimization methods are in
a lead group in all the experiments.
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