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Objectives of the work

• Develop and solve the inverse problem for the model of
population dynamics of the HIV infection;

• Develop and estimate parameters for the model of labelled
cells division;

• Compare the numerical optimization methods for the
formulated problems solution.



Model developement and parameter estimation

• The mathematical description of
the immune processes across
different scales calls for the
development of multi-scale models
characterized by a high
dimensionality of the state space
and a large number of parameters

• For complex models, only a small
subset of the model parameters can
be derived or measured from the
available experimental data. Most
of the remaining parameters have to
be estimated by solving the inverse
problem.

• For high-dimensional models the
parameter estimation problem is
usually computationally demanding.



Parameter estimation problem

• Mathematical model:

(1)


dy(t)
dt = F (y(t), p), t ∈ [0,T ] − model equations;

y(t) =
{
yi (t), i = 1, .., n, yi (t) ∈ C1(0,T )

}
− time dependent variables;

y(0) = y0 − initial conditions;

p = {pi} , i = 1, ..,m − parameter vector.

• p = [a, b], where [a] is a vector of estimated components; {xj , tj}, j = 1, ...,K - experimental
data. The parameter estimation problem can be formulated as:

p∗ = arg min
p∈Ω⊆Rm

Φ(y, x, p) (2)

• A general statistical framework for parameter estimation is the Bayesian approach which under
the assumption of a uniform prior distribution of the model parameters reduces to a maximum
likelihood estimation (MLE). Assuming that the observational errors are normally distributed,
time- and component-independent and the variance of observation errors is the same for all the
state variables and observation times, the MLE reduces to the minimization problem for the
least-squares function

Φ(p) =
K∑
j=1

n∑
i=1

(xi,j − yi (tj ))2, (3)



Numerical optimization methods



HIV epidemiology



Mathematical model of HIV infection

https://en.wikipedia.org

• Most of the models only
account for the acute phase
and asymptomatic latency
phase and cannot explain the
progression to AIDS.

• There are different hypothesis
for AIDS: population dynamics,
virus evolution, et. al.



Mathematical model of HIV infection

• Marchuk-Petrov model of antiviral
immune response was taken as a base;

• Model describes cellular and humoral
immune reactions;

• The infection of target cells by HIV, i.
e. the T helper lymphocytes (CD4
Th1 and CD4 Th2) and the antigen
presenting cells (APC);

• The free virus- and the APC mediated
modes of infection of CD4 T cells;

• The negative feedback of the infection
and target cell destruction on the
homeostasis of the lymphocytes is
considered.

• Model contains 18 variables and 51
parameters, 32 parameters are
estimated;

• Parameters were estimated for two
datasets, characterizing different
scenarios of infection dynamics;



Table: Model variables
Name Variable Initial value
D number of antigen presenting cells (APC), cell/ml 5 · 105
DV number of activated APC , cell/ml 0
HE number of CD4 Th1, cell/ml 4.5 · 105
HB number of CD4 Th2, cell/ml 4.5 · 105

B number of B-lymphocytes, cell/ml 2.7 · 105
P number of plasma cells, cell/ml 10
F number of antibodies, particle/ml 0
E number of cytotoxic T-lymph., cell/ml 4.5 · 105
D∗V number of inf. activated APC, cell/ml 0
H∗E number of inf. CD4 Th1, cell/ml 0
H∗B number of inf. CD4 Th2, cell/ml 0
V number of vir. particles, particle/ml 100
m number of dead target cells(as infection result), cell/ml 0

HEsp number of HIV specific CD4 Th1, cell/ml 5
HBsp number of HIV specific CD4 Th2, cell/ml 5
Bsp number of HIV specific B-cells, cell/ml 3
Esp number of HIV specific cytotoxic T-cells, cell/ml 5
H∗Esp number of infected HIV specific CD4 Th1, cell/ml 0
H∗Bsp number of infected HIV specific CD4 Th2, cell/ml 0



Equations for uninfected unspecific cells and antibodies are written as follows:

dD

dt
= αD (ξD0 − D)− σDVD − γDV VD;

dDV

dt
= γDV VD − αDV

DV − σDVDV ;

dHB

dt
= αHB

(ξH0
B − HB )− σHB

HBV − σD
HB

HBD∗V ;

dHE

dt
= αHE

(ξH0
E − HE )− σHE

HEV − σ
D
HE

HED
∗
V ;

dB

dt
= αB (B0 − B);

dE

dt
= αE (E0 − E);

dP

dt
= b

p
P
ξρP (DV + D∗V )(HBsp + H∗Bsp)Bsp + αP (P0 − P);

dF

dt
= ρFP − γVFVF − αF F ;

Equations for infected unspecific cells are written as follows:

dD∗V
dt

= σDV (D + DV )− bDV ED
∗
V Esp − bD∗

V
D∗V ;

dH∗B
dt

= σHB
HBV + σ

D
HB

HBD∗V − bHBEH
∗
BEsp − bH∗

B
H∗B ;

dH∗E
dt

= σHE
HEV + σ

D
HE

HED
∗
V − bHE EH

∗
E Esp − bH∗

E
H∗E ;



Dynamics of viral particles and total number of dead cells are described by the following equations:

dV

dt
= νDV

D∗V + νHE
(H∗E + H∗Esp) + νHB

(H∗B + H∗Bsp) + NDV
bD∗

V
D∗V

+ NHE
bH∗

E
(H∗E + H∗Esp) + NHB

bH∗
B

(H∗B + H∗Bsp)−
kV (Dv + D∗v )

a(c + V )

− γVHB
V (HB + HBsp)− γVHE V (HE + HEsp)− γVDVD − γVFVF

− γVMV ;

dm

dt
= bDV ED

∗
V Esp + bD∗

V
D∗V + bH∗

E
(H∗E + H∗Esp) + bHE E (H∗E +

H∗Esp)Esp + bH∗
B

(H∗B + H∗Bsp) + bHBE (H∗B + H∗Bsp)Esp ;

Equations for uninfected HIV-specific cells are written as follows:

dHBsp

dt
= αHB

(ξθH0
B − HBsp)− σHB

HBspV − σ
D
HB

HBspD
∗
V +

2bHB
(DV + D∗V )HBsp − bPHB

(DV + D∗V )HBspBsp ;

dHEsp

dt
= αHE

(ξθH0
E − HEsp)− σHE

HEspV − σ
D
HE

HEspD
∗
V +

2bHE
(DV + D∗V )HEsp − bPHE

(DV + D∗V )HEspEsp ;

dBsp

dt
= αB (θB0 − Bsp) + 2bPB (DV + D∗V )(HBsp + H∗Bsp)Bsp ;

dEsp
dt

= αE (θE0 − Esp) + 2bPE (DV + D∗V )(HEsp + H∗Esp)Esp − bEDV
D∗V Esp

− bEHE
H∗E Esp − bEHB

H∗BEsp ;



Equations for infected HIV-specific cells are written as follows:

dH∗Bsp
dt

= σHB
HBspV + σDHB

HBspD
∗
V + 2bHB

(DV + D∗V )H∗Bsp−

bPHB
(DV + D∗V )H∗BspBsp − bHBEH

∗
BspEsp − bH∗BH

∗
Bsp;

dH∗Esp
dt

= σHE
HEspV + σDHE

HEspD
∗
V + 2bHE

(DV + D∗V )H∗Esp−

bPHE
(DV + D∗V )H∗EspEsp − bHEEH

∗
EspEsp − bH∗EH

∗
Esp;

Negative feedback is described as follows:

ξ =
(1− εm)

εm + H0
E + H0

B + D0 ;



Minimized functional

Φ(p) =
17∑
j=1

[log(CD4j ,obs) − log(CD4(tj))]2+

17∑
i=1

[log(CD8j ,obs) − log(CD8(tj))]2+

17∑
i=1

[log(Vj) − log(V (Tj))]2

(4)



HIV model solution

HIV dynamics model, data set 1:

HIV dynamics model, data set 2:



Mathematical model of labelled cells division

• Model describes the kinetics of proliferation of BrdU-labelled
cells for SIV-infected primates;

• The main goal of the model is to check the hypothesis about
chronic immune activation during the infection.

• The model version, describing also the dynamics of Ki67 was
considered.



Mathematical model of labelled cells division

Zvi Grossman, Gennady Bocharov, 2006

• Experimental data is given for
control and infected groups of
animals; synthetic data is also
considered;

• Parameters are evaluated for
control and infected group
simultaneously;



Mathematical model. Parameters

Table: Model parameters

Name Biological meaning Units Range
µ−0 transition rate from A to M−01 ml/day 0.001 - 2
µ+
0 transition rate from A to M+

01 ml/day 0.001 - 2
µ−1 transition rate from A to M+

1 ml/day 0.001 - 2
µ+
2 transition rate from A to M−2 ml/day 0.001 - 2

d−0 death rate M−01 ml/day
d+
0 death rate M+

01 ml/day
d1 death rate M+

1 ml/day
d2 death rate M+

2 ml/day
d3 death rate M−2 ml/day
ρ2 transition rate from M−2 to M+

2 ml/day 0.001 - 1
ρ3 transition rate from M+

2 to M−2 ml/day 0.001 - 1
ρ tuning parameter 0.3 - 3.0
f tuning parameter 0.01 - 1

ml/day
p basic proliferation rate for A ml/day 0.1 - 2.0

A0max maximal number for A ml/day 1
LT label injection interval delay ml/day 1.5



Model equations

AL(t) =


A0max(1 − exp[−2pt]), 0 < t < LT ;

A0max(1 − exp[−2p LT ]), LT ≤ t ≤ LT + ∆;
A0max(1 − exp[−2p LT ]) exp(−2p(t − LT − ∆)), LT + ∆ < t.

dML−
01

dt
=

µ−0
CCR5−stac

ALf − d0M
L−
01 ;

dML +
01

dt
=

µ+
0

CCR5+
stac

ALf − d+
0 M

L +
01 ;

dML +
1

dt
=

µ−1
CCR5+

stac

ALf − d1M
L +
1 ;

dML−
2

dt
=

µ+
2

CCR5−stac
ALf − ρ2M

L−
2 − d3M

L−
2 +

CCR5+
stac

CCR5−stac
ρ3M

L +
2 ;

dML +
2

dt
= ρ2

CCR5−stac
CCR5+

stac

ML−
2 − ρ3M

L +
2 − d2M

L +
2 ;



Minimized functional

F = ΦWLS
c (p) + ΦWLS

i (p)+

γ1(
CCR5+

CONTROL

(CCR5+ + CCR5−)CONTROL
− 0.075)2

+γ2(
CCR5+

INFECTED

(CCR5+ + CCR5−)INFECTED
− 0.06)2

+γ3(
(CCR5+ + CCR5−)INFECTED
(CCR5+ + CCR5−)CONTROL

− 0.16)2

(5)



BRDU-labeled cell division model solution
Cell-division model, control group:

Cell-division model, infected group:

Progressive CD4+ central memory T cell decline results in CD4+ effector memory insufficiency and
overt disease in chronic SIV infection. Okoye A1, Meier-Schellersheim M, et. al.
Picker, Grossman (unpublished data)



Numerical methods used in numerical experiments

TT – TT global optimization method.
CRS2 – Controlled Random Search with local mutation. The idea of the

algorithm is similar to the idea of genetic algorithms, which start
with a random "population" of points, and randomly change these
points according to some heuristic rules.

rMLSL – Multi-Level Single-Linkage with pseudo-random start points.
MLSL is a subtype of multistart algorithm, which implements a
sequence of local optimizations from random start points. The
algorithm uses a clustering heuristic to avoid the re-introducing the
previously founded local optima.

qrMLSL – Multi-Level Single-Linkage with quasi-random start points.
rMLSL+SBPLX – Multi-Level Single-Linkage with pseudo-random start points,

Sublex method used for local optimizations.
qrMLSL+SBPLX – Multi-Level Single-Linkage with quasi-random start points, Sublex

method used for local optimizations.
ISRES – Improved Stochastic Ranking Evolution Strategy. The algorithm

combines a mutation rule, realized with a log-normal step-size
update and exponential smoothing, and differential variation, based
on a Nelder-Mead-like update rule.

ESCH – Evolutionary Algorithm. This is a modification of Evolutionary
Algorithm, developed by Carlos Henrique da Silva Santos’s.



TT global optimization method

• Method was introduced in INM RAS (Zheltkov, Tyrtyshnikov,
et. al.)

• Method is based on the useful properties of the
TT-decomposition and TT-cross interpolation method.

• Sequental and parallel versions of the method were
implemented.



TT global optimization: algorithm

Algorithm 0.1: TT optimization(A ∈ Rn1×...×nd , rmax ,max_it)

for k ← 1 to d
do Pk ← random

for it ← 1 to max_it

do


[Ik , Jk ]← construct_submatrix(nk , nk+1,Pk )
[U,V ,Pk ]← matrix_cross(Ak (Ik , Jk ))
Pk ← Pk

⋃
optimized(Pk )

P ← P1
⋃
. . .

⋃
Pd

Pk ← Pk−1
⋃

Pk
⋃

Pk+1
⋃

best(P, rmax )
return (best(P, 1))

• Complexity: O(dnr2max ) functional evaluations, O(drmax ) local optimizations and
O(dnr3max ) arithmetic operations.

• For parallel version parallel complexity: O(rmax ) functional evaluations, O(1)
local optimizations and O(d + r2max ) arithmetic operations



Numerical results

Locally optimized minimal values of the LSQ functional, obtained by global
optimization methods.Results are given for HIV model (M. 1) for two datasets (data 1
and data 2), and for labelled cell division model (M. 2) for experimental data (data 1)
and synthetic (data 2):

Method M. 1, data 1 M. 1, data 2 M. 2 data 1 M. 2, data 2
TT 2.28 0.146 427 0.0055
CRS2 2.47 0.155 1164 49
rMLSL 2.50 0.186 759 2.4
qrMLSL 2.51 0.184 1062 67.2

rMLSL+SBPLX 2.13 0.144 428 0.04
qrMLSL+SBPLX 2.22 0.148 429 0.008

ISRES 2.34 0.156 526 1
ESCH 3.49 0.166 555 3.3

All methods were set to perform 106 functional evaluations for the first model and 108
for the second model.



Conclusions

• We formulated a mathematical model of HIV infection by
extending the Marchuk-Petrov model of an antiviral immune
response. The model considered a detailed description of the
infection and immune response processes operative in HIV
infection.

• We considered a model of BrdU-labelled cell division for
healthy and SIV-infected primates.

• A number of existing optimization methods were explored to
treat the parameter estimation problem for proposed models;

• The TT-based and MLSL hybrid optimization methods are in
a lead group in all the experiments.
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