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Lévy flight and Lévy walk

Observation for intracellular transport, cell movement, diffusion of tracers
in fluid flows, animal foraging, human travel: path lengths ℓ have
distribution

P(ℓ) ∼ 1/ℓ1+α, 0 < α < 2

.
Lévy flight and Lévy walk are generalized random walk in which the step
lengths during the walk are described by a ”heavy-tailed” probability
distribution.

What is the difference between Lévy flight and Lévy walk?
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Lévy Flight vs. Lévy Walk

Lévy Flight involves an instantaneous jump to a new position. It is a
Markovian process!
Fractional equation for walker’s probability density ρ

∂ρ

∂t
= −Dα (−∆)

α

2 ρ, x ∈ R
2

where (−∆)
α

2 is the fractional Laplacian.

Lévy Walk involves a random movement with finite velocity ~v
constrained to ballistic cone |~x | = |~v |t.
Because of non-Markovian nature of Lévy walk, it cannot be treated
simply with a fractional Laplace operator.

What is the governing integro-differential equation for the PDF ρ?
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Approaches to Lévy Walks in 1D

CTRW Approach Zaburdaev, Denisov, Klafter, Rev. Mod. Phys. 87, 483 (2015)

CTRW involves the joint probability density function (PDF) ψ(x , τ) of the
running times and lengths of displacement

ψ(x , τ) ∼
1

2
δ(|x | − vτ)ψ(τ).

where ψ(τ) is the a ”heavy-tailed” probability density for the running time

Structural Density Approach Fedotov, Phys. Rev. E. 93, 020101 (2016)

1 A walker moves with finite velocity ±v for a random running time

2 With a rate λ(τ) the ‘run’ ends and a new direction is chosen.

Define a structural density n±(x , t, τ) of walkers at position x at time t
with running time τ moving to the left (−) or right (+):

∂n±
∂t

+
∂n±
∂τ

± v
∂n±
∂x

= −λ(τ)n±(x , t, τ). (1)
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Advantages of the Mesoscopic Approach

Lévy walkers are persistent with the running rate

λ(τ) =
µ

τ0 + τ
,

where τ0 > 0 and 1 < µ < 2.

Why consider turning rates λ(τ) instead of the joint PDF ψ(x , τ) for
running times and lengths of displacement?

By explicitly introducing the running time, the motion becomes
Markovian.

For proliferating random walkers, reaction rates can be systematically
included.

Rates can be non-linear: λ(ρ(x , t), τ) = µ

τ0+τ
+f [ρ(x , t)].

Non-local behaviour with the interactions with other walkers can be
included.

There is no consistent methodology for including these effects if starting
from the PDF ψ(x , τ).
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Single integro-differential wave equation for Lévy walk

If the running rate λ is constant, we obtain the telegraph equation

∂2ρ

∂t2
− v2

∂2ρ

∂x2
+ 2λ

∂ρ

∂t
= 0
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Single integro-differential wave equation for Lévy walk

If the running rate λ is constant, we obtain the telegraph equation

∂2ρ

∂t2
− v2

∂2ρ

∂x2
+ 2λ

∂ρ

∂t
= 0

For the general running time density ψ(τ), we obtain an integro-differential
wave equation for the classical one-dimensional Lévy walk:

∂2ρ

∂t2
−v2

∂2ρ

∂x2
+

∫ t

0

∫

V

K (τ)ϕ(u)

(

∂

∂t
− u

∂

∂x

)

ρ (x − uτ, t − τ) dudτ = 0,

where v is a constant speed of walker, ϕ(u) is the velocity jump density:

ϕ(u) =
1

2
δ (u − v) +

1

2
δ (u + v) (2)

in the velocity space V . The standard memory kernel K (τ) is determined
by its Laplace transform K̂ (s) = ψ̂(s)/Ψ̂(s), where ψ̂(s) and Ψ̂(s) are the
Laplace transforms of the running time density ψ(τ) and the survival
function Ψ(τ) Fedotov, Phys. Rev. E. 93, 020101 (R) (2016)
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Lévy Walks Emerge From Walker Alignment

The walkers can interact non-locally with each other, such that the
running rate

λ±(τ, ρ−, ρ+) =
µ±(ρ−, ρ+)

τ + τ0
,

where ρ−(x , t) and ρ+(x , t) are the density of particles moving left and
right,

µ±(ρ−, ρ+) = µ exp

(

−a

∫

R

e−
|z|
la [ρ±(x + z , t)− ρ∓(x + z , t)] dz

)

(3)

expresses the alignment of walkers with interaction strength a, and
characteristic length la.
Persistent walkers which align with their neighbors produce superdiffusive
Lévy walks.

Fedotov and Korabel, Phys. Rev. E 95, 030107(R) (2017).
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Transport in Metapopulation Networks

Scale-Free Network: The power-law probability that a given node has k
links (order k) to other nodes: P(k) ∼ k−γ , γ ∈ [2, 3].

Figure : Barabási-Albert network,

(∗) Colizza and Vespignani, Phys. Rev.
Lett. 99, 148701 (2007).
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Transport in Metapopulation Networks

Scale-Free Network: The power-law probability that a given node has k
links (order k) to other nodes: P(k) ∼ k−γ , γ ∈ [2, 3].

Figure : Barabási-Albert network,

(∗) Colizza and Vespignani, Phys. Rev.
Lett. 99, 148701 (2007).

Mean field transport equation:

dNk(t)

dt
= −Ik(t) + k

∑

k′

P(k ′|k)
Ik′(t)

k ′

Nk : mean number of individuals in node of
order k ;
Ik : mean flux out of node of order k ;
P(k ′|k) : the probability of a link between
nodes of order k → k ′. For Ik(t) = λNk(t):

Nst
k = k

〈N〉

〈k〉

– well-connected nodes are more populous.(∗)

Human activity is not Poissonian!(†)
(†)A.-L. Barabási,
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Axiom of Cumulative Inertia in Network Theory

Axiom of Cumulative Inertia:

An individual’s escape probability from a node decreases with the
(residence) time T spent in the node.

This is an empirical sociological law. The escape rate γk decreases with
residence time

γk(τ) =
µk

τ + τ0
, µk , τ0 > 0

Probability density function (PDF) of a residence time is

ψk(τ) =
µk

τ + τ0

(

τ0
τ + τ0

)

µk

∼ 1/τ1+µk ,

Fedotov and Stage, Phys. Rev. Lett. 118, 9 (2017).
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How Does the Axiom of Cumulative Inertia Affect the

Flux?

Non-Markovian behavior of individuals performing random walk on
network occurs when individuals are trapped during the random time with
non-exponential distribution.

Instead of the classical escape flux from the node with k links

Ik = λNk(t),

the Axiom of Cumulative Inertia leads to a flux

Ik =
1

Γ(1− µk)τ
µk

0

D1−µk
t Nk(t), 0 < µk < 1,

where the Riemann-Liouville (fractional) derivative D1−µ

t is defined as

D1−µk
t Nk(t) =

1

Γ(µk)

∂

∂t

∫ t

0

Nk(u)du

(t − u)1−µk
(4)
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How Does the Axiom of Cumulative Inertia Affect particle

aggregation?

We consider the network for which only one node with, say, 2 links has
anomalous behaviour: power law waiting time density

φ (τ) ∼
1

τ1+µ2

with 0 < µ2 < 1. The node’s mean residence time 〈T 〉 = ∞.

Main result: ultimately all individuals are attracted to this anomalous node
with µ2 < 1.
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Anomalous Aggregation

What is happening inside the trapping (anomalous) node?
Consider the structural density of individuals at time t with residence time
τ , ntrap(t, τ).

ntrap (t, τ) →
N

Γ(1 − µk)Γ(µk)τµk (t − τ)1−µk
,

N is the total number of individuals in the network.
→ Most individuals have been there for a long time, or are new arrivals.

Is this realistic?
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Yes! Data: American MidWest
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Figure : Fedotov and Stage, PRL 118, 9 (2017)
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Conclusions

• The mesoscopic description of non-Markovian reaction-transport
processes on the network is still an open problem.
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